Atherosclerosis (AS) is a major contributor to cardiovascular diseases worldwide, and alleviating inflammation is a promising strategy for AS treatment. Here, we report molecularly engineered M2 macrophage‐derived exosomes (M2 Exo) with inflammation‐tropism and anti‐inflammatory capabilities for AS imaging and therapy. M2 Exo are derived from M2 macrophages and further electroporated with FDA‐approved hexyl 5‐aminolevulinate hydrochloride (HAL). After systematic administration, the engineered M2 Exo exhibit excellent inflammation‐tropism and anti‐inflammation effects via the surface‐bonded chemokine receptors and the anti‐inflammatory cytokines released from the anti‐inflammatory M2 macrophages. Moreover, the encapsulated HAL can undergo intrinsic biosynthesis and metabolism of heme to generate anti‐inflammatory carbon monoxide and bilirubin, which further enhance the anti‐inflammation effects and finally alleviate AS. Meanwhile, the intermediate protoporphyrin IX (PpIX) of the heme biosynthesis pathway permits the fluorescence imaging and tracking of AS.
Atherosclerosis (AS) is a major contributor to cardiovascular diseases worldwide, and alleviating inflammation is a promising strategy for AS treatment. Here, we report molecularly engineered M2 macrophage‐derived exosomes (M2 Exo) with inflammation‐tropism and anti‐inflammatory capabilities for AS imaging and therapy. M2 Exo are derived from M2 macrophages and further electroporated with FDA‐approved hexyl 5‐aminolevulinate hydrochloride (HAL). After systematic administration, the engineered M2 Exo exhibit excellent inflammation‐tropism and anti‐inflammation effects via the surface‐bonded chemokine receptors and the anti‐inflammatory cytokines released from the anti‐inflammatory M2 macrophages. Moreover, the encapsulated HAL can undergo intrinsic biosynthesis and metabolism of heme to generate anti‐inflammatory carbon monoxide and bilirubin, which further enhance the anti‐inflammation effects and finally alleviate AS. Meanwhile, the intermediate protoporphyrin IX (PpIX) of the heme biosynthesis pathway permits the fluorescence imaging and tracking of AS.
SummaryWe have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.