Objective: The clinical management of anaplastic thyroid cancer (ATC) remains challenging and novel treatment methods are needed. Monensin is a carboxyl polyether ionophore that potently inhibits the growth of various cancer types. Our current work investigates whether monensin has selective anti-ATC activity and systematically explores its underlying mechanisms. Methods: Proliferation and apoptosis assays were performed using a panel of thyroid cancer cell lines. Mitochondrial biogenesis profiles, ATP levels, oxidative stress, AMPK and mTOR were examined in these cells after monensin treatment. Results: Monensin is effective to inhibit proliferation and induce apoptosis in a number of thyroid cancer cell lines. The results are consistent across cell lines of varying cellular origins and genetic mutations. Compared to other thyroid cancer cell types, ATC cell lines are the most sensitive to monensin. Of note, monensin used at our experimental concentration affects less of normal cells. Mechanistic studies reveal that monensin acts on ATC cells through disrupting mitochondrial function, inducing oxidative stress and damage, and AMPK activation-induced mTOR inhibition. We further show mitochondrial respiration is a critical target for monensin in ATC cells. Conclusions: Our pre-clinical findings demonstrate the selective anti-ATC activities of monensin. This is supported by increasing evidence monensin can to be repurposed as a potential anti-cancer drug.
Background. The present work aims at formulating the melatonin-loaded nanoparticles (MTNPs) exhibiting the controlled-release and pH-sensitivity to repurpose the use of melatonin in the treatment of depressive-like behaviors and hypothalamus-pituitary-adrenal (HPA) axis dysregulation. Methods. MTNPs were characterized for the size, drug incorporation, and in vitro release in the different pH environments. Its merits were in vivo tested on the pinealectomized rats presenting the depressive-like behaviors and the abnormal HPA axis activity by calculating the improvement on saccharin preference, swimming immobility time, and the negative feedback of HPA axis. Results. Results revealed that MTNPs showed nanometer size, 15.77% of drug loading, 33.82% of encapsulation efficiency, the different controlled-release profiles in different pH environments (pH 1.2, pH 6.8, and pH 7.4), more sensitivity release in simulated intestinal fluid (pH 7.4) and blood (pH 6.8), and less sensitivity release in simulated gastric fluid (pH 1.2). Furthermore, MTNPs displayed better antidepressant actions in reducing the immobility time of forced swimming test, increasing the preference for saccharin, and sensitizing the blunt negative feedback of HPA axis, when compared to the free melatonin. Conclusions. The controlled-release nanoparticles is shown to be an effective improvement on the dosage form for melatonin, which is worthy of futuristic and complete evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.