The current biological valve products used in transcatheter aortic valve replacement (TAVR) are mainly made of glutaraldehyde (GLUT)-crosslinked porcine and bovine pericardia, which need to be transported and stored in GLUT solution. This leads to prolonged preparation time and the presence of GLUT residue. Therefore, there has been interest in developing TAVR valves using a pre-crimped valve (also known as a dry valve). Herein, a natural, inexpensive, and widely available swim bladder was selected as the source of a biological valve functioning as a dry valve and was obtained via acellular processes and crosslinking fixation. With the help of multiple hydrogen bonds between polyphenols (represented by procyanidin and curcumin) and tissue, as well as the chemical crosslinking of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) with tissue, we found that this novel combined crosslinking method was able to successfully crosslink with an acellular swim bladder. The stabilities, mechanical properties, resistance to pre-folding/pre-compressing, flattening capability in water, hemocompatibility, cytocompatibility, and anti-calcification capability were systematically measured via a series of experiments. We demonstrated that this dry valve resulting from a combination of EDC/polyphenols exhibited superior properties compared with those of a control pericardial-based valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.