In this paper, we develop a novel method for fast geodesic distance queries. The key idea is to embed the mesh into a high-dimensional space, such that the Euclidean distance in the high-dimensional space can induce the geodesic distance in the original manifold surface. However, directly solving the high-dimensional embedding problem is not feasible due to the large number of variables and the fact that the embedding problem is highly nonlinear. We overcome the challenges with two novel ideas. First, instead of taking all vertices as variables, we embed only the saddle vertices, which greatly reduces the problem complexity. We then compute a local embedding for each non-saddle vertex. Second, to reduce the large approximation error resulting from the purely Euclidean embedding, we propose a cascaded optimization approach that repeatedly introduces additional embedding coordinates with a non-Euclidean function to reduce the approximation residual. Using the precomputation data, our approach can determine the geodesic distance between any two vertices in near-constant time. Computational testing results show that our method is more desirable than previous geodesic distance queries methods.
In this paper, we develop a novel method for fast geodesic distance queries. The key idea is to embed the mesh into a high-dimensional space, such that the Euclidean distance in the high-dimensional space can induce the geodesic distance in the original manifold surface. However, directly solving the high-dimensional embedding problem is not feasible due to the large number of variables and the fact that the embedding problem is highly nonlinear. We overcome the challenges with two novel ideas. First, instead of taking all vertices as variables, we embed only the saddle vertices, which greatly reduces the problem complexity. We then compute a local embedding for each non-saddle vertex. Second, to reduce the large approximation error resulting from the purely Euclidean embedding, we propose a cascaded optimization approach that repeatedly introduces additional embedding coordinates with a non-Euclidean function to reduce the approximation residual. Using the precomputation data, our approach can determine the geodesic distance between any two vertices in near-constant time. Computational testing results show that our method is more desirable than previous geodesic distance queries methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.