Photodetectors capable of detecting light in a wide spectrum is central to diversified optoelectronic applications in spectroscopy, remote sensing, imaging and optical communication. [1] Two-dimensional (2D) transition metal dichalcogenides (TMDs) provide a tremendous potential for broadband optoelectronics due to their relatively high mobility, appropriate bandgaps, and flexibility. [2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18] In particular, TMD layers of different bandgaps and doping (p or n types) can be stacked together into van der 2D atomic sheets of transition metal dichalcogenides (TMDs) have a tremendous potential for next-generation optoelectronics since they can be stacked layer-by-layer to form van der Waals (vdW) heterostructures. This allows not only bypassing difficulties in heteroepitaxy of lattice-mismatched semiconductors of desired functionalities but also providing a scheme to design new optoelectronics that can surpass the fundamental limitations on their conventional semiconductor counterparts. Herein, a novel 2D h-BN/p-MoTe 2 / graphene/n-SnS 2 /h-BN p-g-n junction, fabricated by a layer-by-layer dry transfer, demonstrates high-sensitivity, broadband photodetection at room temperature. The combination of the MoTe 2 and SnS 2 of complementary bandgaps, and the graphene interlayer provides a unique vdW heterostructure with a vertical built-in electric field for high-efficiency broadband light absorption, exciton dissociation, and carrier transfer. The graphene interlayer plays a critical role in enhancing sensitivity and broadening the spectral range. An optimized device containing 5−7-layer graphene has been achieved and shows an extraordinary responsivity exceeding 2600 A W −1 with fast photoresponse and specific detectivity up to ≈10 13 Jones in the ultraviolet-visible-near-infrared spectrum. This result suggests that the vdW p-g-n junctions containing multiple photoactive TMDs can provide a viable approach toward future ultrahigh-sensitivity and broadband photonic detectors.
Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a member of the long chain family of acyl-CoA synthetase proteins, which have recently been shown to serve an important role in ferroptosis. Previous studies have suggested that ferroptosis is involved in the occurrence of glioma; however, the role of ACSL4 in glioma remains unknown. In the present study, a reduction of ferroptosis in human glioma tissues and glioma cells was observed. Subsequently, it was demonstrated that the expression of ACSL4 was also downregulated in human glioma tissues and cells. A ferroptosis inhibitor and inducer were used to investigate the effects of ferroptosis on viability. The results showed that promoting ferroptosis inhibited the proliferation of glioma cells, and that the use of inducers had the reverse effect. Therefore, it was hypothesized that the reduction in ACSL4 expression may have been involved in ferroptosis and proliferation in glioma. Overexpression of ACSL4 decreased expression of glutathione peroxidase 4 and increased the levels of ferroptotic markers, including 5-hydroxyeicosatetraenoic (HETE), 12-HETE and 15-HETE. Additionally, ACSL4 overexpression resulted in an increase in lactate dehydrogenase release and a reduction in cell viability. The opposite results were observed when ACSL4 was silenced. These findings suggest that ACSL4 regulates ferroptosis and proliferation of glioma cells. To further investigate the mechanism underlying ACSL4-mediated regulation of proliferation in glioma cells, cells were treated with small interfering (si)-ACSL4 and sorafenib, a ferroptosis inducer. sorafenib attenuated the ability of siRNA-mediated silencing of ACSL4, thus improving cell viability. These results demonstrate that ACSL4 protects glioma cells and exerts anti-proliferative effects by activating a ferroptosis pathway and highlight the pivotal role of ferroptosis regulation by ACSL4 in its protective effects on glioma. Therefore, ACSL4 may serve as a novel therapeutic target for the treatment of glioma.
Summary Intracerebral hemorrhagic transformation (HT) is well recognized as a common cause of hemorrhage in patients with ischemic stroke. HT after acute ischemic stroke contributes to early mortality and adversely affects functional recovery. The risk of HT is especially high when patients receive thrombolytic reperfusion therapy with tissue plasminogen activator, the only available treatment for ischemic stroke. Although many important publications address preclinical models of ischemic stroke, there are no current recommendations regarding the conduct of research aimed at understanding the mechanisms and prediction of HT. In this review, we discuss the underlying mechanisms for HT after ischemic stroke, provide an overview of the models commonly used for the study of HT, and discuss biomarkers that might be used for early detection of this challenging clinical problem.
Current treatments for ischemic stroke are insufficient. The lack of effective pharmacological approaches can be mainly attributed to the difficulty in overcoming the blood-brain barrier. Here, we report a simple strategy to synthesize protease-responsive, brain-targeting nanoparticles for the improved treatment of stroke. The resulting nanoparticles respond to proteases enriched in the ischemic microenvironment, including thrombin or matrix metalloproteinase-9, by shrinking or expanding their size. Targeted delivery was achieved using surface conjugation of ligands that bind to proteins that were identified to enrich in the ischemic brain using protein arrays. By screening a variety of formulations, we found that AMD3100-conjugated, size-shrinkable nanoparticles (ASNPs) exhibited the greatest delivery efficiency. The brain targeting effect is mainly mediated by AMD3100, which interacts with CXCR4 that is enriched in the ischemic brain tissue. We showed that ASNPs significantly enhanced the efficacy of glyburide, a promising stroke therapeutic drug whose efficacy is limited by its toxicity. Due to their high efficiency in penetrating the ischemic brain and low toxicity, we anticipate that ASNPs have the potential to be translated into clinical applications for the improved treatment of stroke patients.
Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain–liver axis in psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.