. Significance: Full-field optical angiography is critical for vascular disease research and clinical diagnosis. Existing methods struggle to improve the temporal and spatial resolutions simultaneously. Aim: Spatiotemporal absorption fluctuation imaging (ST-AFI) is proposed to achieve dynamic blood flow imaging with high spatial and temporal resolutions. Approach: ST-AFI is a dynamic optical angiography based on a low-coherence imaging system and U-Net. The system was used to acquire a series of dynamic red blood cell (RBC) signals and static background tissue signals, and U-Net is used to predict optical absorption properties and spatiotemporal fluctuation information. U-Net was generally used in two-dimensional blood flow segmentation as an image processing algorithm for biomedical imaging. In the proposed approach, the network simultaneously analyzes the spatial absorption coefficient differences and the temporal dynamic absorption fluctuation. Results: The spatial resolution of ST-AFI is up to , and the temporal resolution is up to 0.032 s. In vivo experiments on 2.5-day-old chicken embryos were conducted. The results demonstrate that intermittent RBCs flow in capillaries can be resolved, and the blood vessels without blood flow can be suppressed. Conclusions: Using ST-AFI to achieve convolutional neural network (CNN)-based dynamic angiography is a novel approach that may be useful for several clinical applications. Owing to their strong feature extraction ability, CNNs exhibit the potential to be expanded to other blood flow imaging methods for the prediction of the spatiotemporal optical properties with improved temporal and spatial resolutions.
Blood flow functional imaging is widely applied in biological research to provide vascular morphological and statistical parameters. It relies on the absorption difference and is, therefore, easily affected by complex biological structures, and it cannot accommodate abundant functional information. We propose a full-field multifunctional angiography method to classify arteriovenous vessels and to display flow velocity and vascular diameter distribution simultaneously. Unlike previous methods, an under-sampled laser Doppler acquisition mode is used to record the low-coherence speckle, and multi-functional angiography is achieved by modulat-
Blood flow imaging is widely applied in photodynamic therapy (PDT) to provide vascular morphological and statistical parameters. This approach relies on the intensity of time-domain signal differences between blood vessels and background tissues; therefore, it often ignores differences within the vasculature and cannot accommodate abundant structural information. This study proposes a multi-level optical angiography (MOA) method for PDT. It can enhance capillaries and image vessels at different levels by measuring the signal frequency shift associated with red blood cell motion. The experimental results regarding the PDT-induced chorioallantoic membrane model showed that the proposed method could not only perform multi-level angiography but also provide more accurate quantitative information regarding various vascular parameters. This MOA method has potential applications in PDT studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.