In the practical application of WSN (wireless sensor network), location information of the sensor nodes has become one of the essential information pieces in the whole network. At present, some localization algorithms use intelligent optimization algorithm to optimize the node group directly. Although the overall localization error is reduced, the location deviation of individual unknown nodes will be larger, and the large number of iterations will cause a large energy consumption of nodes. Aiming at the above problems, this paper comes up with a two-stage WSN localization algorithm based on the degree of K-value collinearity (DC-K) and improved grey wolf optimization. The first stage is aiming at the defects of the existing collinearity algorithm, putting forward the concept of DC-K, according to the K-value to carry out the initial location in the first stage. The second stage is using the improved grey wolf optimization algorithm to optimize the location results which were obtained in the first stage, so as to get more accurate location results. The experimental results display that this localization algorithm with a better localization accuracy has high robustness and has fewer iterations in the optimization process, which greatly reduces the energy consumption of nodes.
The coordinates of nodes are very important in the application of wireless sensor networks (WSN). The range-free localization algorithm is the best method to obtain the coordinates of sensor nodes at present. Range-free localization algorithm can be divided into two stages: distance estimation and coordinate calculation. For reduce the error in the distance estimation stage, a node localization algorithm for WSN based on virtual partition and distance correction (VP-DC) is proposed in this paper. In the distance estimation stage, firstly, the distance of each hop on the shortest communication path between the unknown node and the beacon node is calculated with the employment of virtual partition algorithm; then, the length of the shortest communication path is obtained by summing the distance of each hop; finally, the unknown distance between nodes is obtained according to the optimal path search algorithm and the distance correction formula. This paper innovative proposes the virtual partition algorithm and the optimal path search algorithm, which effectively avoids the distance estimation error caused by hop number and hop distance, and improves the localization accuracy of unknown nodes.
At present, range-free localization algorithm is the mainstream of node localization method, which has made tremendous achievements. However, there are few algorithms that can be used in concave regions, and the existing algorithms have defects such as hop distance error, excessive time complexity and so on. To solve these problems, this paper proposes a two-stage PSO (Particle Swarm Optimization) algorithm for wireless sensor nodes localization in “concave regions”. In the first stage, it proposes a method of distance measuring based on similar path search and intersection ratio, and completes the initial localization of unknown nodes based on maximum likelihood estimation. In the second stage, the improved PSO algorithm is used to optimize the initial localization results in the previous stage. The experimental result shows that the localization error of this algorithm is always within 10% and the execution time is maintained at about 20 s when the communication radius and beacon node ratio is changing. Therefore, the algorithm can obtain high localization accuracy in wireless sensor network with “concave regions”, requiring low computing power for nodes, and energy consumption. Given this, it can greatly extend the service life of sensor nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.