Xiaoxuming decoction (XXMD) has been traditionally used to manage stroke though debates on its clinical efficacy were present in the history. Till nowadays, it is still one of the most commonly used herbal recipes for stroke. One of the reasons is that a decent proportion of ischemic stroke patients still have residue symptoms even after thrombolysis with rt-PA or endovascular thrombectomy. Numerous clinical studies have shown that XXMD is an effective alternative therapy not only at the acute stage, but also at the chronic sequelae stage of ischemic stroke. Modern techniques have isolated groups of compounds from XXMD which have shown therapeutic effects, such as dilating blood vessels, inhibiting thrombosis, suppressing oxidative stress, attenuating nitric oxide induced damage, protecting the blood brain barrier and the neurovascular unit. However, which of the active compounds is responsible for its therapeutic effects is still unknown. Emerging studies have screened and tested these active compounds aiming to find individual compounds that can be used as drugs to treat stroke. The present study summarized both clinical evidence of XXMD in managing stroke and experimental evidence on its molecular mechanisms that have been reported recently using advanced techniques. A new perspective has also been discussed with an aim to provide new targets that can be used for screening active compounds from XXMD.
Astragalus mongholicus Bunge (Fabaceae) (also known as Astragali radix-AR), a widely used herb by Traditional Chinese Medicine practitioners, possesses a wide range of pharmacological effects, and has been used to treat Alzheimer’s disease (AD) historically. Its bioactive compounds are categorized into four families: saponins, flavonoids, polysaccharides, and others. AR’s bioactive compounds are effective in managing AD through a variety of mechanisms, including inhibiting Aβ production, aggregation and tau hyperphosphorylation, protecting neurons against oxidative stress, neuroinflammation and apoptosis, promoting neural stem cell proliferation and differentiation and ameliorating mitochondrial dysfunction. This review aims to shed light upon the chemical constituents of AR and the mechanisms underlying the therapeutic effect of each compound in manging AD. Also presented are clinical studies which reported successful management of AD with AR and other herbs. These will be helpful for drug development and clinical application of AR to treat AD.
Background: MD2, a co-receptor of a classical proinflammatory protein TLR4 whose activation leads to neuroinflammation. It is widely accepted that TLR4 is expressed on the cell surface of microglia and astrocytes, and MD2 is expected to be expressed by these cells as well. However, our previous study showed that neurons from certain nuclei also expressed MD2. Whether MD2 is expressed by other brain nuclei is still unknown. It is the aim of the present study to map the distribution of MD2 positive cells in the adult mouse brain.Methods: Immunohistochemical staining against MD2 was completed to localize MD2 positive cells in the mouse brain by comparing the location of positive cells with the mouse brain atlas. Retrograde tracing and double immunofluorescence staining with both MD2 and TH were conducted to examine whether dopaminergic neurons in the substantia nigra projecting to the striatum were MD2 positive.Results: MD2 positive cells were found in the majority of mouse brain nuclei with clusters of cells in the olfactory bulb, cortices, the red nucleus, and cranial nuclei. Subcortical nuclei had heterogenous staining of MD2 with more prominent cells in the basolateral and the central amygdaloid nuclei. The ventral pallidum and the diagonal bands had positive cells with similar density and shape. Prominent cells were present in thalamic nuclei which were nearly homogenous, reticular formation of the brainstem where cells were dispersed with similar density. The hypothalamus had fewer outstanding cells compared with the thalamus. The red nucleus, the substantia nigra, and the ventral tegmental area in the pretectum had outstanding cells with the latter two containing dopaminergic neurons projecting to the striatum as shown in retrograde tracing and double fluorescence staining. Raphe, sensory cranial, and deep cerebellar nuclei also had MD2 positive cells with moderate density.Conclusion: MD2 is present not only in glial cells, but also in neurons. Some MD2 positive dopaminergic neurons in SNC and VTA projected to the striatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.