Pyrolysis of a Ni based metal organic framework in NH3yields Ni nanoparticles with surface nitridation together with thin carbon coating layers. The subtle surface modification significantly improves the catalytic performance for the hydrogen evolution reaction (HER).
Background: Aging and the chronic non-communicable diseases (NCDs) challenge the Chinese government in the process of providing hospitalization services fairly and reasonably. The Chinese government has developed the basic medical insurance system to solve the problem of "expensive medical cost and difficult medical services" for vulnerable groups and alleviate the unfair phenomenon. However, few studies have confirmed its effect through longitudinal comparison. This study aimed to explore the trend in the inequity of inpatient use among middleaged and elderly individuals with NCDs in China. Methods: This longitudinal comparative study was based on CHARLS data in 2011, 2013 and 2015. Concentration index (CI) was used to measure the variation trend of inequity of inpatient services utilization, while the decomposition method of the CI was applied to measure the factors contributing to inequity in inpatient services utilization. The effect of each factor on the change of inequity in inpatient services utilization was divided into the change of the elasticity and the change of inequality using the Oaxaca-type decomposition method. Results: The affluent middle-aged and elderly patients with NCDs used more inpatient services than poor groups. The per capita household consumption expenditure (PCE) and Urban Employee Basic Medical Insurance (UEBMI) contributed to the decline in pro-rich inequality of inpatient use, while the New Rural Cooperative Medical Scheme (NRCMS) contributed to the decline in pro-poor inequality of inpatient use. Conclusions: There was a certain degree of pro-rich unfairness in the probability and frequency of inpatient services utilization for middle-aged and elderly individuals with NCDs in China. The decrease of pro-wealth contribution of PCE and UEBMI offset the decrease of pro-poor contribution of NRCMS, and improved the equity of inpatient services utilization, favoring poor people.
Microporous silica (MS) materials are a kind of an emerging and promising adsorbent precursor. MS prepared from vermiculite has the advantages of easy preparation, low cost, and low layer charge. In this study, organo-MS (OMS) modified by a typical gemini surfactant 1,2-bis(hexadecyldimethylammonio)ethane dibromide (G 16 ) is first synthesized and proved to have effective retention capacity toward cationic dyes. Fourier transform infrared spectroscopy, TG-DTG, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller are used to explore the structural characters of adsorbents. Gradient adsorption of compound MS (MS and OMS) in a binary dye system [methylene blue (MB) and crystal violet (CV)] was investigated. In a single system, the relationship between the adsorption capacity and influencing factors (dye concentration, contact time, temperature, and pH), adsorption kinetics, isotherms, as well as thermodynamics was comprehensively compared to reveal the adsorption mechanism. The adsorption values of MB and CV on MS and OMS are 308 mg g −1 (R = 77.0%, 15 min) and 250 mg g −1 (R = 83.3%), respectively, which may be caused by various intermolecular interactions (electrostatic or hydrophobic interactions) between the dye and adsorbent surface. In a binary system, the improved first spectroscopy method is used to calculate the individual concentration of the dye in the binary system. The total removal efficiency of gradient adsorption reaches as high as 89.5% (MB) and 86.4% (CV). In addition, compound MS can be effectively regenerated by HCl solution for several cycles.
Continual development of more advanced catalysts to support the more efficient electrocatalytic nitrogen reduction reaction (NRR) as a qualified substitute of the industrial Haber−Bosch reaction holds great significance but still remains largely underexplored. Many recent works have focused on research on the active central atom of single-atom catalysts (SACs) for electrochemical NRR; yet, a comprehensive investigation on the coordinating environment of the central atom of SACs to enhance the performance of electrochemical NRR has seldom been done and is thus imperative to be developed. Herein, from a DFT perspective, we propose a systematic research on modifiying the coordinating environment of Mn-SACs via diversification of two-dimensional (2D) monolayer supports, usage of the unsaturated form of N-doping, introduction of extra heteroatoms (F, P, and S), and external strain engineering to tune the performance of the electrocatalytic NRR. According to our thermodynamics, kinetics, and selectivity analysis, the N-doped graphene used as the support to anchor Mn-SAC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.