3D hierarchical MoSe2/N-doped carbon microsphere composites exhibit excellent rate capacities as anode materials in lithium-ion and sodium-ion batteries.
The 3D flowerlike iron sulfide (F-FeS) is successfully synthesized via a facile one-step sulfurization process, and the electrochemical properties as anode materials for lithium ion batteries (LIBs) are investigated. Compared with bulk iron sulfide, we find that the unique structural features, overall flowerlike structure, composed of several dozen nanopetals and numerous small size iron sulfide particles embedded within the fine nanopetals, and hierarchical pore structure features provide signification improvements in lithium storage performance, with a high-rate discharge capacity of 779.0 mAh g−1 at a rate of 5 A g−1, due to effectively alleviating the volume expansion during the lithiation/delithiation process, and shorting the diffusion length of both lithium ion and electron. Especially, an excellent cycling stability are achieved, a high discharge capacity of 890 mAh g−1 retained at a rate of 1.0 A g−1, suggesting its promising applications in lithium ion batteries (LIBs).
Integrating a highly conductive carbon host and polar inorganic compounds has been widely reported to improve the electrochemical performances for promising low-cost lithium sulfur batteries. Herein, a MoS2/mesoporous carbon hollow sphere (MoS2/MCHS) structure has been proposed as an efficient sulfur cathode via a simple wet impregnation method and gas phase vulcanization method. Multi-fold structural merits have been demonstrated for the MoS2/MCHS structures. On one hand, the mesoporous carbon hollow sphere (MCHS) matrix, with abundant pore structures and high specific surface areas, could load a large amount of sulfur, improve the electronical conductivity of sulfur electrodes, and suppress the volume changes during the repeated sulfur conversion processes. On the other hand, ultrathin multi-layer MoS2 nanosheets are revealed to be uniformly distributed in the mesoporous carbon hollow spheres, enhancing the physical adsorption and chemical entrapment functionalities towards the soluble polysulfide species. Having benefited from these structural advantages, the sulfur-impregnated MoS2/MCHS cathode presents remarkably improved electrochemical performances in terms of lower voltage polarization, higher reversible capacity (1094.3 mAh g−1), higher rate capability (590.2 mAh g−1 at 2 C), and better cycling stability (556 mAh g−1 after 400 cycles at 2 C) compared to the sulfur-impregnated MCHS cathode. This work offers a novel delicate design strategy for functional materials to achieve high performance lithium sulfur batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.