The brain selectively extracts the most relevant information in top-down processing manner. Does the corticofugal system, a "back projection system," constitute the neural basis of such top-down selection? Here, we show how focal activation of the auditory cortex with 500 nA electrical pulses influences the auditory information processing in the cochlear nucleus (CN) that receives almost unprocessed information directly from the ear. We found that cortical activation increased the response magnitudes and shortened response latencies of physiologically matched CN neurons, whereas decreased response magnitudes and lengthened response latencies of unmatched CN neurons. In addition, cortical activation shifted the frequency tunings of unmatched CN neurons toward those of the activated cortical neurons. Our data suggest that cortical activation selectively enhances the neural processing of particular auditory information and attenuates others at the first processing level in the brain based on sound frequencies encoded in the auditory cortex. The auditory cortex apparently implements a long-range feedback mechanism to select or filter incoming signals from the ear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.