The Bjerknes compensation (BJC) under global warming is studied using a simple box model and a coupled Earth system model. The BJC states the out-of-phase changes in the meridional atmosphere and ocean heat transports. Results suggest that the BJC can occur during the transient period of global warming. During the transient period, the sea ice melting in the high latitudes can cause a significant weakening of the Atlantic meridional overturning circulation (AMOC), resulting in a cooling in the North Atlantic. The meridional contrast of sea surface temperature would be enhanced, and this can eventually enhance the Hadley cell and storm-track activities in the Northern Hemisphere. Accompanied by changes in both ocean and atmosphere circulations, the northward ocean heat transport in the Atlantic is decreased while the northward atmosphere heat transport is increased, and the BJC occurs in the Northern Hemisphere. Once the freshwater influx into the North Atlantic Ocean stops, or the ocean even loses freshwater because of strong heating in the high latitudes, the AMOC would recover. Both the atmosphere and ocean heat transports would be enhanced, and they can eventually recover to the state of the control run, leading to the BJC to become invalid. The above processes are clearly demonstrated in the coupled model CO2 experiment. Since it is difficult to separate the freshwater effect from the heating effect in the coupled model, a simple box model is used to understand the BJC mechanism and freshwater’s role under global warming. In a warming climate, the freshwater flux into the ocean can cool the global surface temperature, mitigating the temperature rise. Box model experiments indicate clearly that it is the freshwater flux into the North Atlantic that causes out-of-phase changes in the atmosphere and ocean heat transports, which eventually plays a stabilizing role in global climate change.
Despite the rapid increase of greenhouse gases (GHGs) in the atmosphere during the past 50 years, observed global mean surface temperature (GMST) showed a pause in the warming trend during the first decade of the twenty-first century. This is referred to as the global warming “hiatus”. A dominant hypothesis emphasizes that the superimposition of the cold phase of the Pacific decadal variability and the global warming trend can lead to the hiatus. Using simply energy balance models, we explore two potential mechanisms that may supress the GMST warming trend: enhanced negative climate feedback and downward heat mixing. Forced by linearly increasing heating, a stronger negative climate feedback can reduce the GMST warming rate, but cannot result in a warming hiatus. Downward mixing of heat can cause a short-lived hiatus of surface warming rate due to enhanced nonlinear ocean heat uptake by the lower ocean, but the surface warming would be accelerated in the long run due to the decline of downward heat mixing rate. This study provides further evidence, both theoretically and numerically, that in the long run, the only route to contain the global warming effectively is to reduce GHG emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.