The quantity of Sertoli cells in the adult testis decides the daily gamete formation, and accumulating evidence indicates that epigenetic factors regulate the proliferation of Sertoli cells. Research on the function and regulatory mechanism of microRNAs (miRNAs) in Sertoli cells has not been comprehensive yet, especially on domestic animals. In this article, we report that miR-126 controls the proliferation and apoptosis of immature porcine Sertoli cells based on previous studies. Our results confirmed that miR-126 elevation promotes cell cycle progression, cell proliferation and represses cell apoptosis; on the contrary, the inhibitory effects of miR-126 result in the opposite. The phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) gene, a member of the PI3K family, was verified as a direct target of miR-126 using the dual-luciferase reporter analysis. miR-126 negatively regulated the mRNA and protein expression level of PIK3R2 in immature porcine Sertoli cells. siRNA-induced PIK3R2 inhibition caused similar effects as miR-126 overexpression and eliminated the influences of miR-126 knockdown in immature porcine Sertoli cells. In addition, both miR-126 overexpression and PIK3R2 inhibition elevated the phosphorylation of PI3K and AKT, whereas the miR-126 knockdown demonstrated the contrary result. In short, miR-126 controls the proliferation and apoptosis of immature porcine Sertoli cells by targeting the PIK3R2 gene through the PI3K/AKT signaling pathway. The research supplies a theoretical and practical foundation for exploring the functional parts of miR-126 in swine sperm by defining the destiny of immature Sertoli cells.
Sertoli cells are the crucial coordinators to guarantee normal spermatogenesis and male fertility. Although circular RNAs (circRNAs) exhibit developmental-stage-specific expression in porcine testicular tissues and have been thought of as potential regulatory molecules in spermatogenesis, their functions and mechanisms of action remain largely unknown, especially in domestic animals. A novel circBTBD7 was identified from immature porcine Sertoli cells using reverse transcription PCR, Sanger sequencing, and fluorescence in situ hybridization assays. Functional assays illustrated that circBTBD7 overexpression promoted cell cycle progression and cell proliferation, as well as inhibited cell apoptosis in immature porcine Sertoli cells. Mechanistically, circBTBD7 acted as a sponge for the miR-24-3p and further facilitated its target mitogen-activated protein kinase 7 (MAPK7) gene. Overexpression of miR-24-3p impeded cell proliferation and induced cell apoptosis, which further attenuated the effects of circBTBD7 overexpression. siRNA-induced MAPK7 deficiency resulted in a similar effect to miR-24-3p overexpression, and further offset the effects of miR-24-3p inhibition. Both miR-24-3p overexpression and MAPK7 knockdown upregulated the p38 phosphorylation activity. The SB202190 induced the inhibition of p38 MAPK pathway and caused an opposite effect to that of miR-24-3p overexpression and MAPK7 knockdown. Collectively, circBTBD7 promotes immature porcine Sertoli cell growth through modulating the miR-24-3p/MAPK7 axis to inactivate the p38 MAPK signaling pathway. This study expanded our knowledge of noncoding RNAs in porcine normal spermatogenesis through deciding the fate of Sertoli cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.