Mass sensitivity is vital for quartz crystal microbalance (QCM)-based data analysis. The mass sensitivity distribution of QCMs may differ greatly depending on the shapes, thicknesses, sizes, and materials of the metal electrodes. This is not considered by the Sauerbrey equation, and has a large potential to cause errors in QCM-based data analysis. Many previous works have studied the effects of shape, thickness, and size of metal electrodes on mass sensitivity. However, it is necessary to continue to clarify the relationship between the mass sensitivity and the electrode material of the QCM. In this paper, the results of both theoretical calculation and experimental analysis showed that the mass sensitivity of QCMs with gold electrodes is higher than that of the QCMs with silver electrodes, which in turn indicated that the mass sensitivity of QCMs varies with the electrode material. Meanwhile, the results of this study showed that the mass sensitivity of QCMs with different electrode materials is not proportional to the density of the electrode materials. This result suggests that, in order to obtain more accurate results in the practical applications of QCMs, the influence of electrode material on the mass sensitivity of the QCMs must be considered.
Mass sensitivity plays a crucial role in the practical application of quartz crystal microbalances (QCMs)-based quantitative analysis. n-m type QCMs have many applications, so it is necessary to clarify the relationship between the mass sensitivity and the electrode of the n-m type QCM. The performance of gold-plated films with different electrodes was studied by theoretical calculation and experiment. The results show that the mass sensitivity on the surface of the n electrode and the surface of the m electrode are essentially the same. Meanwhile, the mass sensitivity of n-m type QCMs varies with the diameter of the n and m electrodes. When the diameter of the n electrode is close to half the diameter of the m electrode, mass sensitivity is at maximum value. These results are important for the further designs and applications of n-m type QCMs.
In this paper, a high sensitivity and high stability quartz crystal microbalance (QCM) humidity sensor using polydopamine (PDA) coated cellulose nanocrystal (CNC)/graphene oxide (GO) (PDA@CNC/GO) nanocomposite as sensitive material is demonstrated. The PDA@CNC was prepared by the self-polymerization action on the surface of CNC, and it acted as filler material to form functional nanocomposite with GO. The material characteristics of PDA@CNC, CNC/GO and PDA@CNC/GO were analyzed by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The experimental results show that the introduction of PDA@CNC into GO film not only effectively enhanced the sensitivity of GO-based nanocomposite-coated QCM sensor but also significantly maintained high stability in the entire humidity range. The PDA@CNC/GO30-coated QCM humidity sensor exhibited a superior response sensitivity up to 54.66 Hz/% relative humidity (RH), while the change rate of dynamic resistance of the sensor in the humidity range of 11.3–97.3% RH is only 14% that is much smaller than that of CNC/GO-coated QCM. Besides, the effect of the PDA@CNC content on the sensitivity and stability of GO-based nanocomposite-coated QCM humidity was also studied. Moreover, other performances of PDA@CNC/GO-coated QCM humidity sensor, including humidity hysteresis, fast response and recovery and long-term stability, were systematically investigated. This work suggests that PDA@CNC/GO nanocomposite is a promising candidate material for realizing high sensitivity and high stability QCM humidity sensor in the entire humidity detection range.
A quartz crystal microbalance (QCM) is a typical acoustic transducer that undergoes a frequency shift due to changes in the mass of its surface. Its high sensitivity, robustness, small size design, and digital output have led to its widespread development for application in the fields of chemistry, physics, biology, medicine, and surface science. Mass sensitivity is one of the vital parameters and forms the basis for quantitative analysis using QCMs. This review firstly introduces the importance, definition, calculation, and measuring method of the mass sensitivity and then focuses on reviewing the influence of electrode parameters (including electrode shape, electrode diameter, electrode thickness, electrode material, etc.) on the mass sensitivity distribution of QCMs. Finally, the effect of the operating frequency on the mass sensitivity of QCMs is also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.