Background Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecum miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis. Results Compared with the controls, 94 and 127 DEMs were found in cecum of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp/kegg/kegg1.html) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. For previous uses, the Kanehisa laboratory have happily provided permission. The integrated analysis of miRNA–gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. Conclusion This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection.
IntroductionHistomonas meleagridis can cause histomonosis in poultry. Due to the prohibition of effective drugs, the prevention and treatment of the disease requires new strategies. Questions about its pathogenic mechanisms and virulence factors remain puzzling.MethodsTo address these issues, a tandem mass tag (TMT) comparative proteomic analysis of a virulent strain and its attenuated strain of Chinese chicken-origin was performed.ResultsA total of 3,494 proteins were identified in the experiment, of which 745 proteins were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05), with 192 up-regulated proteins and 553 down-regulated proteins in the virulent strain relative to the attenuated strain.DiscussionSurface protein BspA like, digestive cysteine proteinase, actin, and GH family 25 lysozyme were noted among the proteins up regulated in virulent strains, and these several proteins may be directly related to the pathogenic capacity of the histomonad. Ferredoxin, 60S ribosomal protein L6, 40S ribosomal protein S3, and NADP-dependent malic enzyme which associated with biosynthesis and metabolism were also noted, which have the potential to be new drug targets. The up-regulation of alpha-amylase, ras-like protein 1, ras-like protein 2, and involucrin in attenuated strains helps to understand how it is adapted to the long-term in vitro culture environment. The above results provide some candidate protein-coding genes for further functional verification, which will help to understand the molecular mechanism of pathogenicity and attenuation of H. meleagridis more comprehensively.
Background: Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecal miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis.Results: Compared with the controls, 94 and 127 DEMs were found in cecal of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. The integrated analysis of miRNA–gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. Conclusion: This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection. This article contributes to future research into miRNA-target interactions during H. meleagridis infection in chickens and provides new ideas for H. meleagridis treatment and control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.