The potential energy curves (PEC) for the ground state (X2∏) and three excited states (4∑-, 2∑-, 2Δ) of SF molecule are computed using the multireference configuration interaction method and the basis sets aug-cc-pV6Z where the Davidson correction is considered as an approximation to full CI. The separation parameters (Re, ωe, ωeχe, D0, De, Be and αe) are evaluated using the PEC of SF. The spectroscopic parameters are compared with those reported in the literature, and excellent agreement is found between them. With the PEC of SF, some vibrational states of SF are predicted when J=0 by numerically solving the radical Schrödinger equation of nuclear motion. For each vibrational state, the vibrational levels and inertial rotation constants are reported.
The high level quantum chemistry ab inito multi-reference configuration interaction (MRCI) method with large V5Z basis set is used to calculate the spectroscopic properties of the 15 Λ—S electronic states (X1Σ+, A1Π, 1Δ, 1Σ−, 3Σ+, 3Π, 3Δ, 3Σ−, 5Σ+, 5Π, 5Δ, 1Π (II), 5Σ+ (II), 1Π (III), and 1Π (IV)) of AsO+ radical correlated to the dissociation limit As+(3Pg) + O(3Pg) and As+(1Dg) + O(1Dg). In order to obtain better potential curves and more accurate spectroscopic properties, the Davidson modification is taken into account. With the potential energy curves (PECs) determined here, vibrational levels G(v) and inertial rotation constants Bu are computed for all the bound electronic states when the rotational quantum number J equals zero (J = 0). Except for the states X1Σ+, A1Π, it is the first time that the multi-reference configuration calculation has been used on the 13 Λ—S electronic states of the AsO+ radical. The potential energy curves of all the Λ—S electronic states are depicted according to the avoided crossing rule of the same symmetry. Spin—orbit coupling effect (SOC) is introduced into the states X1Σ+, A1Π, 3Π to consider its effects on the spectroscopic properties. Transition dipole moments (TDMs) from A1Π1, 3Π1 states to the ground state X1Σ+0 + are predicted as well.
The dissociation limit of AsCl free-radical is correctly determined based on group theory and atomic and molecular statics. Potential energy curves (PECs) for the ground state and several low-lying electronic excited states of AsCl free-radical are calculated using the multi-reference configuration interaction method with the basis set of aug-cc-pV5Z where the Davidson correction is considered as an approximation to full CI. Separation parameters (Re, e, ee, D0, De, Be and e) are evaluated using the PEC of AsCl. Spectroscopic parameters are compared with those reported in the literature, and excellent agreement is found between them. With the PEC of AsCl free-radical, forty vibrational states of AsCl free-radical are predicted when J=0 by numerically solving the radial Schrdinger equation of nuclear notion. For each vibrational state, the vibrational levels and inertial rotation constants are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.