In this research, a flexible inkjet-printed temperature sensor with in-house silver nanoparticles ink is presented and compared with the sensor printed with commercial silver nanoparticles ink. These sensors have an average width of 0.5 ± 0.04 mm in the latter and 0.5 ± 0.03 mm in the former. These serpentine-structure sensors were printed on polyethylene terephthalate (PET) substrate by using a Fujifilm Dimatix 2850 printer. The corresponding results indicating resistance have been recorded in the range of 30–100 °C to evaluate the sensor performance. The result of the studies showed that there was a linear relationship between the resistance and temperature for both ink types. The printed sensors developed using the in-house ink presented higher sensitivity, 0.1086 Ω/°C, compared to the commercial ink, which was 0.0543 Ω/°C. Therefore, the flexible inkjet-printed temperature sensor with the in-house silver nanoparticles ink is recommended for the large-scale productions and implementations.
This paper presents a new temperature sensor, inkjet-printed with the in-house developed hybrid rGO/Ag nanoparticles ink (rGO/AgNPs ink). Its performance is studied, and the results indicate that its sensitivity is better than the commercial sensor. The meander—shaped electrodes were fabricated using drop-on-demand inkjet printer (Fujifilm Dimatix 2850 printer) on polyethylene terephthalate (PET) substrate. Compared to the sensitivity 0.0543 ?/oc of the sensor developed with commercial ink, the in-house developed sensor shows higher sensitivity 0.1086 ?/oc. Besides, the printed sensors exhibit its resistance increasing linearly with temperature from 30°C to 100°C. The bending tests results also prove that the characteristics of the sensors do not vary significantly, indicating excellent mechanical stability and flexibility. Therefore, the flexible inkjet-printed temperature sensor with the in-house hybrid rGO/AgNPs ink is recommended for the large-scale productions and implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.