Uncertainty is an integral part of risk assessment of complex engineering systems, such as nuclear power plants and space crafts. The aim of sensitivity analysis is to identify the contribution of the uncertainty in model inputs to the uncertainty in the model output. In this study, a new importance measure that characterizes the influence of the entire input distribution on the entire output distribution was proposed. It represents the expected deviation of the cumulative distribution function (CDF) of the model output that would be obtained when one input parameter of interest were known. The applicability of this importance measure was tested with two models, a nonlinear nonmonotonic mathematical model and a risk model. In addition, a comparison of this new importance measure with several other importance measures was carried out and the differences between these measures were explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.