The aim of this study is to demonstrate the effect of extracellular calcium ion (Ca2+) and inorganic phosphate (Pi) concentrations on the growth and differentiation of bone-marrow-derived mesenchymal stem cells (MSCs), which is essential to understand the interaction between calcium phosphate ceramic (CPC) scaffolds and seeded cells during the construction of tissue-engineered bones. MSCs were separated from rabbits and cultured in media with different concentrations of Ca2+ and Pi supplements. Their proliferation, apoptosis, mineralization and osteogenic differentiation were determined by the MTT assay, TUNEL assay, Vonkossa stain and RT-PCR examination. A two-way ANOVA calculation with comparisons of estimated marginal means by LSD was used for statistical analysis. Results showed that the optimal extracellular Ca2+ and Pi concentrations for the cells to proliferate and differentiate were 1.8 mM and 0.09 mM, respectively, which are the concentrations supplied in many commonly used culture media such as DMEM and alpha-MEM. Cell proliferation and differentiation decreased significantly with greater or lower concentrations of the Pi supplement. Greater Pi concentrations also led to significant cell apoptosis. Greater Ca2+ concentrations did not change cell proliferation but significantly inhibited cell differentiation. In addition, greater Ca2+ concentrations could significantly enhance cell mineralization. In conclusion, extracellular Ca2+ and Pi significantly influence the growth and osteogenic differentiation of MSCs. It is important to take the cellular effect of Ca2+ and Pi into consideration when designing or constructing scaffolds for bone tissue engineering with CPC.
Umbilical cord mesenchymal stem cells (UC-MSCs) have been suggested as a candidate for various clinical applications, however, major limitations include the lack of organ-specific accumulation and low survival rates of transplanted cells. In the present study, it was hypothesized that the paracrine effects of UC-MSCs may enhance stem cell-based tissue repair and regeneration by promoting the specific homing of stem/progenitor cells and the overall ability to drive them to the damaged area. UC-MSCs-derived conditioned medium (UC-CM) was analyzed using liquid chip and ELISA techniques. In vitro tube formation assays of human umbilical vein endothelial cells (HUVECs) and UC-MSCs were then performed to assess the angiogenic properties of UC-CM. Subsequently, UC-MSCs, HUVECs and fibroblasts were labeled with PKH26 for an in vivo cell migration assay. The expression levels of C-X-C chemokine receptor 4 (CXCR4), C-C chemokine receptor 2 (CCR2) and c-met were determined in the UC-MSCs, HUVECs and fibroblasts using reverse transcription-quantitative polymerase chain reaction and flow cytometry. UC-CM was incubated with or without antibodies, and the contribution of stromal cell-derived factor 1 (SDF-1), monocyte chemotactic protein 1 (MCP-1) and hepatocyte growth factor (HGF) on the migration of cells was investigated in vitro. The results demonstrated that UC-MSCs secreted different cytokines and chemokines, including increased quantities of SDF-1, MCP-1 and HGF, in addition to the angiogenic factors, vascular cell adhesion protein-1, interleukin-8, insulin-like growth factor-1 and vascular endothelial growth factor. The total lengths of the tubes were significantly increased in the UC-MSCs and HUVECs incubated in UC-CM compared with those incubated in Dulbecco’s modified Eagle’s medium. In vivo cell migration assays demonstrated that UC-CM was a chemotactic stimulus for the UC-MSCs and HUVECs. In vitro Matrigel migration and scratch healing assays demonstrated that UC-CM increased the migration of CXCR4-postive or/and CCR2-positive cells in a dose-dependent manner. In addition, different molecules were screened under antibody-based blocking migration conditions. The data revealed that the SDF-1/CXCR4 and MCP-1/CCR2 axes were involved in the chemoattractive activity of UC-CM and suggested that the effective paracrine factor of UC-CM is a large complex rather than a single factor. The results of the present study supported the hypothesis that UC-MSCs release soluble factors, which may extend the therapeutic applicability of stem cells.
γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their underlying mechanisms. We found that PAM could selectively activate and expand human Vγ9Vδ2-T cells. PAM-expanded human Vγ9Vδ2-T cells efficiently killed influenza virus-infected lung alveolar epithelial cells and inhibited virus replication. The cytotoxic activity of PAM-expanded Vγ9Vδ2-T cells was dependent on cell-to-cell contact and required NKG2D activation. Perforin-granzyme B, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-Fas ligand (FasL) pathways were involved in their cytotoxicity. Our study suggests that targeting γδ-T cells by PAM can potentially offer an alternative option for the treatment of influenza virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.