Three-dimensional aggregate-suspension culture is a potential biomanufacturing method to produce a large number of human induced pluripotent stem cells (hiPSCs); however, the use of expensive growth factors and method-induced mechanical stress potentially result in inefficient production costs and difficulties in preserving pluripotency, respectively. Here, we developed a simple, miniaturized, dual-compartment dialysis-culture device based on a conventional membrane-culture insert with deep well plates. The device improved cell expansion up to approximately ~3.2 to 4×107 cells/mL. The high-density expansion was supported by reduction of excessive shear stress and agglomeration mediated by the addition of the functional polymer FP003. The results revealed accumulation of several growth factors, including fibroblast growth factor 2 and insulin, along with endogenous Nodal, which acts as a substitute for depleted transforming growth factor-β1 in maintaining pluripotency. Because we used the same growth-factor formulation per volume in the upper culture compartment, the cost reduced in inverse proportional manner with the cell density. We showed that growth-factor-accumulation dynamics in a low-shear-stress environment successfully improved hiPSC proliferation, pluripotency, and differentiation potential. This miniaturised dialysis-culture system demonstrated the feasibility of cost-effective mass production of hiPSCs in high-density culture.
Three-dimensional aggregate-suspension culture can produce large numbers of human induced pluripotent stem cells (hiPSCs); however, use of expensive growth factors and method-induced mechanical stress potentially result in inefficient production costs and difficulties in preserving pluripotency. Here, we developed a simple, miniaturized, dual-compartment dialysis-culture device based on a conventional membrane-culture insert with deep well plates. The device allowed growth-factor accumulation and improved cell expansion up to ~ 32 × 106 cells/mL, and reduction of excessive shear stress and agglomeration following addition of the functional polymer FP003 supported high-density expansion. The results revealed accumulation of several growth factors, including fibroblast growth factor 2 and insulin, along with endogenous NODAL, which acts as a substitute for depleted transforming growth factor-β1 in maintaining pluripotency. Because we used the same growth-factor formulation per volume in the upper culture compartment, cost reduction increased significantly in proportional manner with cell density. We showed that growth-factor-accumulation dynamics in a low-shear-stress environment successfully improved hiPSC proliferation, pluripotency, and differentiation potential. This miniaturised dialysis-culture system demonstrated the feasibility and cost-effective mass production of hiPSCs in high-density culture.
During chronic liver injury, inflammation leads to the development of liver fibrosis— particularly due to the activation of hepatic stellate cells (HSCs). However, the involvement of inflammatory cytokines in HSC activation is unclear. Many existing in vitro liver models do not include these non-parenchymal cells (NPCs), and hence, do not represent the physiological relevance found in vivo. Herein, we demonstrated the hierarchical coculture of primary rat hepatocytes with NPCs such as the human-derived HSC line (LX-2) and the human-derived liver sinusoidal endothelial cell line (TMNK-1). The coculture tissue had higher albumin production and hepatic cytochrome P450 3A4 activity compared to the monoculture. We then further studied the effects of stimulation by both oxygen tension and key pro-fibrogenic cytokines, such as the transforming growth factor beta (TGF-β), on HSC activation. Gene expression analysis revealed that lower oxygen tension and TGF-β1 stimulation enhanced collagen type I, III, and IV, alpha-smooth muscle actin, platelet-derived growth factor, and matrix metallopeptidase expression from LX-2 cells in the hierarchical coculture after fibrogenesis induction. This hierarchical in vitro cocultured liver tissue could, therefore, provide an improved platform as a disease model for elucidating the interactions of various liver cell types and biochemical signals in liver fibrosis studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.