Background Flap endonuclease 1 (FEN1) is a structure-specific nuclease that plays a role in a variety of DNA metabolism processes. FEN1 is important for maintaining genomic stability and regulating cell growth and development. It is associated with the occurrence and development of several diseases, especially cancers. There is a lack of systematic bibliometric analyses focusing on research trends and knowledge structures related to FEN1. Purpose To analyze hotspots, the current state and research frontiers performed for FEN1 over the past 15 years. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC) database, analyzing publication dates ranging from 2005 to 2019. VOSviewer1.6.15 and Citespace5.7 R1 were used to perform a bibliometric analysis in terms of countries, institutions, authors, journals and research areas related to FEN1. A total of 421 publications were included in this analysis. Results Our findings indicated that FEN1 has received more attention and interest from researchers in the past 15 years. Institutes in the United States, specifically the Beckman Research Institute of City of Hope published the most research related to FEN1. Shen BH, Zheng L and Bambara Ra were the most active researchers investigating this endonuclease and most of this research was published in the Journal of Biological Chemistry. The main scientific areas of FEN1 were related to biochemistry, molecular biology, cell biology, genetics and oncology. Research hotspots included biological activities, DNA metabolism mechanisms, protein-protein interactions and gene mutations. Research frontiers included oxidative stress, phosphorylation and tumor progression and treatment. Conclusion This bibliometric study may aid researchers in the understanding of the knowledge base and research frontiers associated with FEN1. In addition, emerging hotspots for research can be used as the subjects of future studies.
<b><i>Purpose:</i></b> At the first time of metastatic breast cancer recurrence, conversion of the receptors status may occur between primary lesions and metastatic lesions, including the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Whether the decision of the treatment regimen is based on the primary receptor status or that of metastatic lesions is still unclear. <b><i>Methods:</i></b> This study enrolled 411 female patients with a diagnosis of metastatic breast cancer at the first time of recurrence to explore the influence of receptor conversion on prognosis prediction and treatment regimen of patients with metastatic breast cancer. <b><i>Results:</i></b> ER and PR changes from negative to positive are both prognostic factors for patients with breast cancer. Patients receiving endocrine therapy showed a better survival after recurrence than those using chemotherapy alone in the ER or PR Prim– Met+ subgroup. Patients in the HER2 Prim– Met+ subgroup using HER2-targeted therapy in multilines showed a post-recurrence survival advantage. In the bone re-biopsy subgroup, the PR change from positive to negative appeared to be more frequent than at other re-biopsy sites. <b><i>Conclusions:</i></b> Patients with metastatic breast cancer should perform re-biopsy to clarify the receptor status of the first metastatic lesions, which may provide clinicians valuable evidence to conduct treatments with higher precision.
Kinases are among the most important families of biomolecules and play an essential role in the regulation of cell proliferation, apoptosis, metabolism, and other critical physiological processes. The dysregulation and gene mutation of kinases are linked to the occurrence and development of various human diseases, especially cancer. As a result, a growing number of small-molecule drugs based on kinase targets are being successfully developed and approved for the treatment of many diseases. The indole/azaindole/oxindole moieties are important key pharmacophores of many bioactive compounds and are generally used as excellent scaffolds for drug discovery in medicinal chemistry. To date, 30 ATP-competitive kinase inhibitors bearing the indole/azaindole/oxindole scaffold have been approved for the treatment of diseases. Herein, we summarize their research and development (R&D) process and describe their binding models to the ATP-binding sites of the target kinases. Moreover, we discuss the significant role of the indole/azaindole/oxindole skeletons in the interaction of their parent drug and target kinases, providing new medicinal chemistry inspiration and ideas for the subsequent development and optimization of kinase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.