ObjectiveTo describe the characteristics of the perforator vessel in the peroneal artery of the lower leg and to explore the use of perforator pedicle propeller flaps to repair soft tissue defects in the lower leg, heel and foot.MethodsThis retrospective study enrolled patients with soft tissue defects of the distal lower leg, heel and foot who underwent surgery using peroneal perforator-based propeller flaps. The peroneal artery perforators were identified preoperatively by colour duplex Doppler ultrasound. The flap was designed based on the preoperatively-identified perforator location, with the posterior border of the fibula employed as an axis, and the perforator vessel as the pivot point of rotation. Patients were followed-up to determine the outcomes.ResultsThe study analysed 36 patients (mean age, 39.7 years). The majority of the soft tissue defects were on the heel (20; 55.6%). The donor-site of the flap was closed in 11 patients by direct suturing and skin grafting was undertaken in 25 patients. Postoperative complications included venous congestion (nine patients), which was managed with delayed wound coverage and bleeding therapy. All wounds were eventually cured and the flaps were cosmetically acceptable.ConclusionsThe peroneal perforator pedicle propeller flap is an appropriate choice to repair soft tissue defects of the distal limbs.
Objective. To study the role of bacterial biofilm (BBF) in the formation of chronic osteomyelitis and its prevention and treatment. Methods. In this paper, a large amount of relevant literature was searched for analysis and summary, and the key words “chronic osteomyelitis,” “bacterial biofilm,” “infection,” and “debridement” were searched in databases, mainly CNKI, Wanfang, and Wipu. The search was conducted until December 2020. The role of bacterial biofilm formation in chronic osteomyelitis and its prevention were analyzed. Results. Chronic osteomyelitis is formed mainly due to poor blood supply and drug-resistant bacteria, of which cellular biofilm is the most important cause. BBF forms on the surface of necrotic soft tissue and bone tissue, which has a protective effect on bacteria and greatly enhances their resistance to antibiotics, leading to difficulties in complete bacterial clearance and recurrent infections in osteomyelitis. Conclusion. Through an in-depth study of the molecular biology and signal transduction of osteomyelitis biofilm, antibiotic biofilm treatment strategies and surgical debridement remain the focus of clinical translation of chronic osteomyelitis.
Objective. Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disorder. Its most severe form is referred to as chronic recurrent multifocal osteomyelitis (CRMO). Currently, the exact molecular pathophysiology of CNO/CRMO remains unknown. No uniform diagnostic standard and treatment protocol were available for this disease. The aim of this study was to identify the differentially expressed genes (DEGs) in CRMO tissues compared to normal control tissues to investigate the mechanisms of CRMO. Materials. Microarray data from the GSE133378 (12 CRMO and 148 matched normal tissue samples) data sets were downloaded from the Gene Expression Omnibus (GEO) database. DEGs were identified using the limma package in the R software. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network analysis were performed to further investigate the function of the identified DEGs. Results. This study identified a total of 1299 differentially expressed mRNAs, including1177 upregulated genes and 122 downregulated genes, between CRMO and matched normal tissue samples. GO analyses showed that DEGs were enriched in immune-related terms. KEGG pathway enrichment analyses showed that the DEGs were mainly related to oxidative phosphorylation, ribosome, and Parkinson disease. Eight modules were extracted from the gene expression network, including one module constituted with immune-related genes and one module constituted with ribosomal-related genes. Conclusion. Oxidative phosphorylation, ribosome, and Parkinson disease pathways were significantly associated with CRMO. The immune-related genes including IRF5, OAS3, and HLA-A, as well as numerous ribosomal-related genes, might be implicated in the pathogenesis of CRMO. The identification of these genes may contribute to the development of early diagnostic tools, prognostic markers, or therapeutic targets in CRMO.
Purpose To investigate the clinical effect of gastrocnemius muscle flaps combined with vancomycin/gentamicin-calcium sulfate combined and autologous iliac bone graft in the phase I treatment of traumatic focal osteomyelitis (Cierny-Mader type III) after tibial plateau fracture surgery. Methods From July 2009 to January 2018, 35 patients with localized osteomyelitis (Cierny-Mader type III) who met the inclusion criteria were followed up and treated. All patients were infected after undergoing internal fracture fixation surgery. Among them, 18 cases were plate-exposed, 14 cases were due to sinus tracts, two were due to skin necrosis, and one was bone-exposed. We treated patients with several measures. All cases were then followed up. The follow-up indicators included Hospital for Special Surgery knee scores (HSS), the time of laying drainage pipe, bone healing time, infection control rate, and the incidence of nonunion and other complications. Results All patients were followed up for 24–60 months. None of them underwent amputation. For repairing soft tissue defects, 17 cases were covered with a muscle flap using the medial head of gastrocnemius alone, 15 cases were treated with the lateral head of gastrocnemius muscle, and three cases were covered with the combination of the two heads. Compared to the preoperative score, we found that the average HSS improved at the 1-year and 2-year follow-up (54 vs. 86 vs. 87). Conclusion Using a gastrocnemius muscle flap combined with vancomycin/gentamicin-calcium sulfate and autogenous iliac bone was an effective method for the phase I treatment of osteomyelitis (Cierny-Mader type III) after tibial plateau fracture surgery. In the primary treatment of focal traumatic osteomyelitis, it can decrease the treatment time, number of surgeries, pain of patients, time of bone healing, postoperative exudation, and infection recurrence rate and increase the healing bone’s strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.