Background and Aims NAFLD is a progressive disease without known effective drug treatments. Switch‐associated protein 70 (SWAP70) is a guanine nucleotide exchange factor that participates in the regulation of many cellular processes. However, the role of SWAP70 in NAFLD remains unclear. This study aimed to identify the function and mechanism of SWAP70 in NAFLD. Approach and Results The results showed that the expression of SWAP70 was significantly increased in mice and hepatocytes after metabolic stimulation. Overexpression of SWAP70 in hepatocytes suppressed lipid deposition and inflammation, and SWAP70 knockdown created the inverse effect. Using hepatocyte‐specific Swap70 knockout and overexpression mice fed a high‐fat, high‐cholesterol diet, we demonstrated that SWAP70 suppressed the progression of nonalcoholic steatohepatitis by inhibiting lipid accumulation, inflammatory response, and fibrosis. Mechanically, RNA sequencing analysis and immunoprecipitation assays revealed that SWAP70 inhibited the interaction between transforming growth factor β‐activated kinase 1 (TAK1) binding protein 1 and TAK1 and sequentially suppressed the phosphorylation of TAK1 and subsequent c‐Jun N‐terminal kinase/P38 signaling. Inhibition of TAK1 activation blocked hepatocyte lipid deposition and inflammation caused by SWAP70 knockdown. Conclusions SWAP70 is a protective molecule that can suppress the progression of NAFLD by inhibiting hepatic steatosis and inflammation. SWAP70 may be important for mitigating the progression of NAFLD.
Background Benign prostatic hyperplasia (BPH) is a common disease in elderly men and is often accompanied by chronic inflammation. Macrophages (several subtypes) are the main inflammatory cells that infiltrate the hyperplastic prostate and are found to secrete cytokines and growth factors. The current study aims to explore the effect of M2a macrophages on the development of BPH via insulin‐like growth factor 1 (IGF‐1). Methods Human prostate tissues, prostate, and monocyte cell lines (WPMY‐1, BPH‐1, and THP‐1) were used. THP‐1 was polarized into several subtypes with cytokines. The expression and localization of IGF‐1 and M2 macrophages were determined via immunofluorescent staining, quantitative real‐time polymerase chain reaction, and Western blot analysis. Flow cytometry and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assays were used to investigate the effects of different subtypes of macrophages on prostate cells. IGF‐1 in WPMY‐1 and BPH‐1 cells was silenced and cocultured with or without M2a macrophages. Cell proliferation, apoptosis, cell cycle, epithelial–mesenchymal transition (EMT), and fibrosis processes were examined. Results The polarized subtypes of macrophages were verified by amplifying their specific markers. M2a macrophages enhanced prostate cell proliferation more significantly and CD206 was more expressed in hyperplastic prostate. IGF‐1 was localized in both epithelial and stromal components of prostate and upregulated in BPH tissues. M2a macrophages expressed more IGF‐1 than other subtypes. Knockdown of IGF‐1 in WPMY‐1 and BPH‐1 cells attenuated cell proliferation, promoted cell apoptosis, retarded cell cycle at the G0/G1 phase, and suppressed the EMT process in BPH‐1 cells as well as the fibrotic process in WPMY‐1 cells, which was reversible when cocultured with M2a macrophages. Conclusion These data demonstrated that knockdown of IGF‐1 expression in cultured BPH epithelial and stromal cells reduces proliferation and increases apoptosis. These effects are reversed by coculture with M2a macrophages.
Benign prostatic hyperplasia (BPH) is a common disease among aging males with the etiology remaining unclear. We recently found myosin II was abundantly expressed in rat and cultured human prostate cells with permissive roles in the dynamic and static components. The present study aimed to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in the hyperplastic prostate. Human prostate cell lines and tissues from normal human and BPH patients were used. Hematoxylin and Eosin (H&E), Masson’s trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. We further created cell models with NMM II isoforms silenced and proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Hyperplastic prostate SM expressed more SM1 and LC17b isoforms compared with their alternatively spliced counterparts, favoring a slower more tonic-type contraction and greater force generation. For BPH group, blebbistatin (BLEB, a selective myosin II inhibitor), exhibited a stronger effect on relaxing phenylephrine (PE) pre-contracted prostate strips and inhibiting PE-induced contraction. Additionally, NMMHC-A and NMMHC-B were up-regulated in hyperplastic prostate with no change in NMMHC-C. Knockdown of NMMHC-A or NMMHC-B inhibited prostate cell proliferation and induced apoptosis, with no changes in cell cycle. Our novel data demonstrate that expression and functional activities of myosin II isoforms are altered in human hyperplastic prostate, suggesting a new pathological mechanism for BPH. Thus, the myosin II system may provide potential new therapeutic targets for BPH/lower urinary tract symptoms (LUTS).
Background: Bladder cancer (BLCA) is the most popular malignant carcinomas in genitourinary system which has a high incidence and is prone to relapse. However, the molecular mechanism of BLCA remains to be unclear. Moreover, there is still a shortage of effective biomarkers that can predict progression and prognosis of BLCA. The objective of current study is to screen significant genes as biomarkers to forecast the progression and prognosis of BLCA patients.Methods: Gene expression profile downloaded from TCGA database and GEO database was used. Differential gene expression analysis and WGCNA were conducted to identify differential co-expression genes. In addition, GO enrichment analysis and KEGG pathway analysis were used to explore the functions of these genes. Moreover, PPI network, OS and DFS were used to identify survival-related hub genes. Finally, the expression levels of these genes were validated by qRT-PCR and HPA database.Results: About 124 differential co-expression genes were identified. And these genes were mainly enriched in muscle system process and muscle contraction (BP), contractile fiber, myofibril, sarcomere, focal adhesion and cell-substrate junction (CC) and actin binding (MF) in GO enrichment analysis, while enriched in vascular smooth muscle contraction, focal adhesion, cardiac muscle contraction, hypertrophic cardiomyopathy, dilated cardiomyopathy and regulation of actin cytoskeleton in KEGG analysis. Furthermore, five survival-related hub genes (MYH11, ACTA2, CALD1, TPM1, MYLK) were identified via overall OS and DFS. In addition, the expression levels of the five survival-related genes were upregulated with the procession of BLCA, such as grade, stage and TNM stage. Finally, all survival-related hub genes were found to be down-regulated in BLCA via qRT-PCR and HPA database.Conclusions: Our current study verified five new key genes in BLCA, which could help us better understand the pathogenesis of BLCA. And these five hub genes may be involved in the development and progression of BLCA and served as potential biomarkers.
Our study aims to explore changes in bladder contractility and the phosphodiesterase type 5 (PDE5) signalling pathway in response to partial bladder outlet obstruction (PBOO). A surgically induced male rat PBOO model and human obstructed bladder tissues were used. Histological changes were examined by H&E and Masson's trichrome staining. Bladder strip contractility was measured via organ bath. The expressions of nitric oxide synthase (NOS) isoforms, PDE5, muscarinic cholinergic receptor (CHRM) isoforms and PDE4 isoforms in bladder were detected by RT‐PCR and Western blotting. The immunolocalization of the PDE5 protein and its functional activity were also determined. PBOO bladder tissue exhibited significant SM hypertrophy and elevated responsiveness to KCl depolarization and the muscarinic receptor agonist carbachol. NOS isoforms, PDE5, CHRM2, CHRM3 and PDE4A were up‐regulated in obstructed bladder tissue, whereas no change in PDE4B and PDE4D isoform expression was observed. With regard to PDE5, it was expressed in the SM bundles of bladder. Interestingly, obstructed bladder exhibited less relaxation responsiveness to sodium nitroprusside (SNP), but an exaggerated PDE5 inhibition effect. The up‐regulation of PDE5 could contribute to the lack of effect on Qmax for benign prostatic hyperplasia/lower urinary tract symptom (BPH/LUTS) patients treated with PDE5 inhibitors. Moreover, PDE5 (with presence of NO) and PDE4 may serve as new therapeutic targets for bladder diseases such as BPH‐induced LUTS and overactive bladder (OAB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.