A metal–insulator–metal (MIM) waveguide system consisting of a MIM waveguide, a ring cavity, and a semi-ring cavity is proposed. Using the finite element method, the transmission characteristics of the MIM waveguide system are discussed under the different geometry parameters. By detecting the resonance wavelength and varying the refractive index, the sensing performance of the MIM waveguide system is analyzed. The proposed structure can be used as a refractive index sensor with the maximum sensitivity of 2412 nm/RIU. Due to isolating the ring cavity and semi-ring cavity, the independent tuning of double resonances can be realized by changing the refractive index of the insulator in the ring cavity or the semi-ring cavity. Benefiting from two independent refractive index sensing modes, the structure with two isolated resonators can realize the simultaneous measurement of glucose solution concentration and blood plasma concentration. The sensitivity of glucose solution sensing in the ring cavity is 0.13133 nm/(g/L). Meanwhile, the blood plasma concentration detection in the semi-ring cavity is realized with the sensitivity of 0.358 nm/(g/L). The system with two isolated cavities has the potential to be used as an efficient nano sensor, which can achieve simultaneous measurement of two parameters.
A surface plasmon polaritons (SPPs) waveguide structure composed of a metal-insulator-metal (MIM) waveguide with a ba e, a special square cavity (SSC) and a ring cavity (RC), is proposed to realize independent tuning of triple Fano resonances. Using the nite element method (FEM), the magnetic eld distributions and optical transmission spectra of the structure are analyzed in detail. The simulation results show that the structure achieves triple Fano resonances originated from two different mechanics.One of Fano resonances occurs in the RC, and the others occur in SSC. By regulating the structural parameters of the SSC and RC, respectively, these Fano resonances can be well tuned independently, which provides exibility for the structure to be applied to optical devices. In addition, the structure exhibits great performances in refractive index sensing and bio-sensing. The maximum sensitivity of refractive index sensing achieves 2350 nm/RIU, and there is a good linear relationship between resonance wavelength and refractive index. Due to great sensitivity and independent tunability, the SPPs waveguide structure may be potentially used in micro-nano optical devices, especially in optical on-chip sensor.
We propose a plasmonic waveguide comprising a single-layer graphene, a silica dielectric layer, and a silicon grating substrate to realize dual-channel slow surface plasmon polaritons. The dual-channel results from the introduction of two kinds of periodic structures with defects in the waveguide. According to the Bragg equation, we match the appropriate structure parameters to ensure the slow light dual-channel working around
λ
1
=
9369.1
n
m
(32 THz) and
λ
2
=
7138.2
n
m
(42 THz). The influence of the structure parameters on the slow light effect is discussed, and the largest value of the normalized delay bandwidth product (NDBP) is up to 7.38. Then, by shifting the gate voltage, obvious linear blueshift of the dual-channel is achieved. In this process, the slow light performance of the dual-channel exhibits good stability, and the average values of the NDBP are 4.5 and 4.4. Due to the flexible tunability, the waveguide may pave the way for the design of slow light devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.