Abstract:We present the theoretical basis and experimental verification for cardiac output measurements using noninvasively measured hemodilution curves afforded with an indicator dilution technique and the emerging photoacoustic technology. A photoacoustic system noninvasively tracks a transient hemodilution effect induced by a bolus of isotonic saline as an indicator. As a result, a photoacoustic indicator dilution curve is obtained, which allows to estimate cardiac output from the developed algorithm. The experiments with a porcine blood circulatory phantom system demonstrated the feasibility of this technology towards the development of a noninvasive cardiac output measurement system for patient monitoring. 14(5), 054024 (2009). 14. T. J. Allen, B. T. Cox, and P. C. Beard, "Generating photoacoustic signals using high-peak power pulsed laser diodes," Proc. SPIE 5696, 233-242 (2005 735-746 (1951).
Abstract:Recently, the measurement of indicator dilution curves using a photoacoustic (PA) technology was reported, which showed promising results on the noninvasive estimation of cardiac output (CO) that is an important hemodynamic parameter useful in various clinical situations. However, in clinical practice, measuring PA indicator dilution curves from an arterial blood vessel requires an ultrasound transducer array capable of focusing on the targeted artery. This causes several challenges on the clinical translation of the PA indicator dilution method, such as high sensor cost and complexity. In this paper, we theoretically derived that a composite PA indicator dilution curve simultaneously measured from both arterial and venous blood vessels can be used to estimate CO correctly. The ex-vivo and in-vivo experimental results with a flat ultrasound transducer verified the developed theory. We believe this new concept would overcome the main challenges on the clinical translation of the noninvasive PA indicator dilution technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.