We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.
Axions differ from the other cold dark matter candidates in that they form a
degenerate Bose gas. It is shown that their huge quantum degeneracy and large
correlation length cause cold dark matter axions to thermalize through
gravitational self-interactions when the photon temperature reaches
approximately 500 eV. When they thermalize, the axions form a Bose-Einstein
condensate. Their thermalization occurs in a regime, herein called the
`condensed regime', where the Boltzmann equation is not valid because the
energy dispersion of the particles is smaller than their interaction rate. We
derive analytical expressions for the thermalization rate of particles in the
condensed regime, and check the validity of these expressions by numerical
simulation of a toy model. We revisit axion cosmology in light of axion
Bose-Einstein condensation. It is shown that axions are indistinguishable from
ordinary cold dark matter on all scales of observational interest, except when
they thermalize or rethermalize. The rethermalization of axions that are about
to fall in a galactic potential well causes them to acquire net overall
rotation as they go to the lowest energy state consistent with the total
angular momentum they acquired by tidal torquing. This phenomenon explains the
occurrence of caustic rings of dark matter in galactic halos. We find that
photons may reach thermal contact with axions and investigate the implications
of this possibility for the measurements of cosmological parameters.Comment: 38 pages, 1 figur
We observe that photon cooling after big bang nucleosynthesis (BBN) but before recombination can remove the conflict between the observed and theoretically predicted value of the primordial abundance of 7 Li. Such cooling is ordinarily difficult to achieve. However, the recent realization that dark matter axions form a Bose-Einstein condensate (BEC) provides a possible mechanism, because the much colder axions may reach thermal contact with the photons. This proposal predicts a high effective number of neutrinos as measured by the cosmic microwave anisotropy spectrum.PACS numbers: 95.35.+d
The EDGES Collaboration has reported an anomalously strong 21 cm absorption feature corresponding to the era of first star formation, which may indirectly betray the influence of dark matter during this epoch. We demonstrate that, by virtue of the ability to mediate cooling processes while in the condensed phase, a small amount of axion dark matter can explain these observations within the context of standard models of axions and axionlike particles. The EDGES best-fit result favors an axionlike particle mass in the (10, 450) meV range, which can be compressed for the QCD axion to (100, 450) meV in the absence of fine tuning. Future experiments and large scale surveys, particularly the International Axion Observatory (IAXO) and EUCLID, should have the capability to directly test this scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.