To recreate high-resolution, more detailed remote sensing images from existing low-resolution photos, this technique is known as remote sensing image superresolution reconstruction, and it has numerous uses. As an important research hotspot of neural networks, generative adversarial network (GAN) has made outstanding progress for image superresolution reconstruction. It solves the computational complexity and low reconstructed image quality of standard superresolution reconstruction algorithms. This research offers a superresolution reconstruction strategy with a self-attention generative adversarial network to improve the quality of reconstructed superresolution remote sensing images. The self-attention strategy as well as residual module is utilized to build a generator in this model that transforms low-resolution remote sensing images into superresolution ones. It aims to determine the discrepancy between a reconstructed picture and a true picture by using a deep convolutional network as a discriminator. For the purpose of enhancing the accuracy, content loss is used. This is done to obtain accurate detail reconstruction. According to the findings of the experiments, this approach is capable of regenerating higher-quality images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.