A study on selective chelating precipitation of palladium metal from real electroplating wastewater using chitosan and its water-soluble derivative was conducted. The pH parameter, the concentrations of chitosan and its water-soluble derivative and the chelating precipitation time were experimentally investigated, and the optimum conditions were determined. The results revealed that both chitosan and its water-soluble derivative acted as chelating precipitation agents. Rapid chelating precipitation occurred when chitosan was added to real electroplating wastewater containing the chitosan derivative, thereby improving removal efficiency of palladium in different forms up to 95% under the optimum condition of 0.2 g/L chitosan and 0.16 mg/L derivative at pH 2.5. Then, dissolution experiments showed that chelating precipitation products could be dissolved in aqua regia. Additionally, selective chelating precipitation of palladium by chitosan and its derivative was characterized using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Thus, it can be concluded that the combined utilization of chitosan and its water-soluble derivative is a promising approach method for the removal of different forms of palladium from real electroplating wastewater.
Abstract:The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), particle size analysis and electrochemical measurements. The results show that the modified graphite has a disordered carbon/graphite composite structure, larger average particle diameter, greater tap density, and better electrochemical characteristics than the untreated graphite. The sample coated with 10% pitch dynamical melt-carbonized at 400 ℃ for 3 h and heat-treated at 850 ℃ for 2 h has better electrochemical performances with a reversible capacity of 360.5 mA·h/g, a irreversible capacity of 41.0 mA·h/g, and an initial coulombic efficiency of 89.8% compared with natural graphite and disordered carbon. The cycling stability of the Li/C cell with modified graphite as anodes is improved, and its capacity retention ratio at the 30th cycle is up to 94.37%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.