Liquid-crystal elastomers (LCEs) are a class of actively moving polymers with remarkable practical potential for converting external stimuli into mechanical actuation. However, real-world applications of LCEs are lacking because macroscopic orientation of liquid-crystal order, which is required for reversible actuations, is hard to achieve in practice. Here we show that the processing bottleneck of LCEs can be overcome by introducing exchangeable links in place of permanent network crosslinks, a concept previously demonstrated for vitrimers. Liquid-crystal elastomers with exchangeable links (xLCEs) are mouldable, allow for easy processing and alignment, and can be subsequently altered through remoulding with different stress patterns, thus opening the way to practical xLCE actuators and artificial muscles. Surprisingly, instead of external-stress relaxation through the creep of non-liquid-crystal transient networks with exchangeable links, xLCEs develop strong liquid-crystal alignment as an alternative mechanism of mechanical relaxation.
Hot-pressing shape memory vitrimers lead to multishape memory, multifunctionality, easy reconfiguration, and the possibility of mass production of arbitrary smart structures.
Introducing oligoaniline into a vitrimer resulted in a smart material that simultaneously responds to six different stimuli and performs six different functions.
Thermal reprogrammability is essential for new‐generation large dry soft actuators, but the realization sacrifices the favored actuation performance. The contradiction between thermal reprogrammability and stability hampers efforts to design high‐performance soft actuators to be robust and thermally adaptable. Now, a strategy has been developed that relies on repeatedly switching on/off thermal reprogrammability in liquid‐crystalline elastomer (LCE) actuators to resolve this problem. By post‐synthesis swelling, a latent siloxane exchange reaction can be induced in the common siloxane LCEs (switching on), enabling reprogramming into on‐demand 3D‐shaped actuators; by switching off the dynamic network by heating, actuation stability is guaranteed even at high temperature (180 °C). Using partially black‐ink‐patterned LCEs, selectively switching off reprogrammability allows integration of completely different actuation modes in one monolithic actuator for more delicate and elaborate tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.