Objective To assess the relationship between opioid therapy for chronic noncancer pain and fracture risk by a meta-analysis of cohort studies and case-control studies. Methods The included cohort studies and case-control studies were identified by searching the PubMed and EMBASE databases from their inception until May 24, 2019. The outcome of interest was a fracture. This information was independently screened by two authors. When the heterogeneity among studies was significant, a random effects model was used to determine the overall combined risk estimate. Results In total, 12 cohort studies and 6 case-control studies were included. We used the Newcastle-Ottawa Scale (NOS) to evaluate the quality of the included literature, and 14 of the studies were considered high-quality studies. The overall relative risk of opioid therapy and fractures was 1.78 (95% confidence interval (CI) 1.53-2.07). Subgroup analyses revealed sources of heterogeneity, sensitivity analysis was stable, and no publication bias was observed. Conclusions The meta-analysis showed that the use of opioids significantly increased the risk of fracture.
Background
With aging, an imbalance in bone remodeling leading to increased bone resorption and decreased bone formation is thought to contribute to osteoporosis. Osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) plays a vital role in the pathogenesis of osteoporosis. However, the detailed molecular mechanisms of osteoporosis remain incompletely understood. Given that long non-coding RNA taurine upregulated gene 1 (lnc TUG1) plays a critical role in the osteogenic differentiation, and microRNA-23b (miR-23b) as a putative sponge for lnc TUG1 has upregulated expression in osteoporosis. Therefore, this study investigated the roles of TUG1/miR-23b in osteoporotic pathology.
Material and Methods
TUG1 and miR-23b expression in the plasma of osteoporotic patients were evaluated by quantitative real-time PCR (qRT-PCR). The osteogenic differentiation in human BMMSCs was evaluated by qRT-PCR, western blot, Alizarin red staining after knockdown of TUG1 by small interfering RNA (siRNA) treatment.
Results
Decreased expression of TUG1 and increased expression of miR-23b evident in the plasma of patients with osteoporosis than in that of age- and sex-matched healthy controls. Additionally, increased miR-23b expression inhibited runt-related transcription factor 2 (RUNX2), osteocalcin, and osteopontin expression and reduced calcified nodule formation based on the results of qRT-PCR, western blot, and Alizarin Red S staining.
Conclusion
The study for the first time reported that silence of lncRNA TUG1 significantly suppressed the osteogenic differentiation of BMMSCs possibly by targeting the miR-23b/RUNX2 signaling pathway. This mechanism of TUG1/miR-23b/RUNX2 signaling within the osteogenic differentiation of BMMSCs might provide new insight for the development of lncRNA-directed diagnostic and therapeutic strategies for osteoporosis.
Human mesenchymal stem cells (hMSCs) are fibroblastoid multipotent adult stem cells with capacities of differentiation into osteoblasts and chondrocytes and show great potential in new bone formation and bone repair‐related clinical settings, such as osteoporosis. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in various biological processes. Here, we report an antisense lncRNA SEMA3B‐AS1 regulating hMSCs osteogenesis. SEMA3B‐AS1 is proximal to a member of the semaphorin family Sema3b. Overexpression of SEMA3B‐AS1 using the lentivirus system markedly inhibits the proliferation of hMSCs and meanwhile reduces osteogenic differentiation. Using a comprehensive proteomic technique named isobaric tag for relative and absolute quantitation, we found that SEMA3B‐AS1 significantly alters the process of osteogenesis through downregulating the expression of proteins involved in actin cytoskeleton, focal adhesion, and extracellular matrix–receptor interaction, while increasing the expression of proteins in the spliceosome. Collectively, we find that SEMA3B‐AS1 is a target for controlling osteogenesis of hMSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.