23More than 80,000 angiosperm species produce flowers with petals fused into a corolla 24 tube (i.e., sympetalous flowers). As an important element of the tremendous diversity of 25 flower morphology, the corolla tube plays a critical role in many specialized interactions 26 between plants and animal pollinators (e.g., beeflies, hawkmoths, hummingbirds, nectar 27 bats), which in turn drives rapid plant speciation. Despite its clear significance in plant 28 reproduction and evolution, the corolla tube remains one of the least understood plant
Over 80,000 angiosperm species produce flowers with petals fused into a corolla tube. The corolla tube contributes to the tremendous diversity of flower morphology and plays a critical role in plant reproduction, yet it remains one of the least understood plant structures from a developmental genetics perspective. Through mutant analyses and transgenic experiments, we show that the tasiRNA-ARF pathway is required for corolla tube formation in the monkeyflower species Mimulus lewisii. Loss-of-function mutations in the M. lewisii orthologs of ARGONAUTE7 and SUPPRESSOR OF GENE SILENCING3 cause a dramatic decrease in abundance of TAS3-derived small RNAs and a moderate upregulation of AUXIN RESPONSE FACTOR3 (ARF3) and ARF4, which lead to inhibition of lateral expansion of the bases of petal primordia and complete arrest of the upward growth of the interprimordial regions, resulting in unfused corollas. Using the DR5 auxin-responsive promoter, we discovered that auxin signaling is continuous along the petal primordium base and the interprimordial region during the critical stage of corolla tube formation in the wild type, similar to the spatial pattern of MlARF4 expression. Auxin response is much weaker and more restricted in the mutant. Furthermore, exogenous application of a polar auxin transport inhibitor to wild-type floral apices disrupted petal fusion. Together, these results suggest a new conceptual model highlighting the central role of auxin-directed synchronized growth of the petal primordium base and the interprimordial region in corolla tube formation.
Ischemic stroke causes a heavy health burden worldwide, with over 10 million new cases every year. Despite the high prevalence and mortality rate of ischemic stroke, the underlying molecular mechanisms for the common etiological factors of ischemic stroke and ischemic stroke itself remain unclear, which results in insufficient preventive strategies and ineffective treatments for this devastating disease. In this review, we demonstrate that transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a non-selective ion channel activated by oxidative stress, is actively involved in all the important steps in the etiology and pathology of ischemic stroke. TRPM2 could be a promising target in screening more effective prophylactic strategies and therapeutic medications for ischemic stroke.
Summary
Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation.
We characterized the role of two classes of leaf adaxial–abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development.
Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted.
We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.