Abstract:There are numerous applications of unmanned aerial vehicles (UAVs) in the management of civil infrastructure assets. A few examples include routine bridge inspections, disaster management, power line surveillance and traffic surveying. As UAV applications become widespread, increased levels of autonomy and independent decision-making are necessary to improve the safety, efficiency, and accuracy of the devices. This paper details the procedure and parameters used for the training of convolutional neural networks (CNNs) on a set of aerial images for efficient and automated object recognition. Potential application areas in the transportation field are also highlighted. The accuracy and reliability of CNNs depend on the network's training and the selection of operational parameters. This paper details the CNN training procedure and parameter selection. The object recognition results show that by selecting a proper set of parameters, a CNN can detect and classify objects with a high level of accuracy (97.5%) and computational efficiency. Furthermore, using a convolutional neural network implemented in the "YOLO" ("You Only Look Once") platform, objects can be tracked, detected ("seen"), and classified ("comprehended") from video feeds supplied by UAVs in real-time.
In this paper, we propose a novel end-to-end approach for scalable visual
search infrastructure. We discuss the challenges we faced for a massive
volatile inventory like at eBay and present our solution to overcome those. We
harness the availability of large image collection of eBay listings and
state-of-the-art deep learning techniques to perform visual search at scale.
Supervised approach for optimized search limited to top predicted categories
and also for compact binary signature are key to scale up without compromising
accuracy and precision. Both use a common deep neural network requiring only a
single forward inference. The system architecture is presented with in-depth
discussions of its basic components and optimizations for a trade-off between
search relevance and latency. This solution is currently deployed in a
distributed cloud infrastructure and fuels visual search in eBay ShopBot and
Close5. We show benchmark on ImageNet dataset on which our approach is faster
and more accurate than several unsupervised baselines. We share our learnings
with the hope that visual search becomes a first class citizen for all large
scale search engines rather than an afterthought.Comment: To appear in 23rd SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2017. A demonstration video can be found at
https://youtu.be/iYtjs32vh4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.