The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.
Wildfires are an important source of nitrous acid (HONO), a photolabile radical precursor, yet in situ measurements and quantification of primary HONO emissions from open wildfires have been scarce. We present airborne observations of HONO within wildfire plumes sampled during the Western Wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) campaign. ΔHONO/ΔCO close to the fire locations ranged from 0.7 to 17 pptv ppbv–1 using a maximum enhancement method, with the median similar to previous observations of temperate forest fire plumes. Measured HONO to NO x enhancement ratios were generally factors of 2, or higher, at early plume ages than previous studies. Enhancement ratios scale with modified combustion efficiency and certain nitrogenous trace gases, which may be useful to estimate HONO release when HONO observations are lacking or plumes have photochemical exposures exceeding an hour as emitted HONO is rapidly photolyzed. We find that HONO photolysis is the dominant contributor to hydrogen oxide radicals (HO x = OH + HO2) in early stage (<3 h) wildfire plume evolution. These results highlight the role of HONO as a major component of reactive nitrogen emissions from wildfires and the main driver of initial photochemical oxidation.
We present emission measurements of volatile organic compounds (VOCs) for western U.S. wildland fires made on the NSF/NCAR C‐130 research aircraft during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) field campaign in summer 2018. VOCs were measured with complementary instruments onboard the C‐130, including a proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐ToF‐MS) and two gas chromatography (GC)‐based methods. Agreement within combined instrument uncertainties (<60%) was observed for most co‐measured VOCs. GC‐based measurements speciated the isomeric contributions to selected PTR‐ToF‐MS ion masses and generally showed little fire‐to‐fire variation. We report emission ratios (ERs) and emission factors (EFs) for 161 VOCs measured in 31 near‐fire smoke plume transects of 24 specific individual fires sampled in the afternoon when burning conditions are typically most active. Modified combustion efficiency (MCE) ranged from 0.85 to 0.94. The measured campaign‐average total VOC EF was 26.1 ± 6.9 g kg−1, approximately 67% of which is accounted for by oxygenated VOCs. The 10 most abundantly emitted species contributed more than half of the total measured VOC mass. We found that MCE alone explained nearly 70% of the observed variance for total measured VOC emissions (r2 = 0.67) and >50% for 57 individual VOC EFs representing more than half the organic carbon mass. Finally, we found little fire‐to‐fire variability for the mass fraction contributions of individual species to the total measured VOC emissions, suggesting that a single speciation profile can describe VOC emissions for the wildfires in coniferous ecosystems sampled during WE‐CAN.
Oxidative stress mediated by reactive oxygen species (ROS) is a hypothesized mechanism for particulate-matter related health effects. Fe(II) is a key player in ROS formation in surrogate lung fluid (SLF) containing antioxidants. Humic-like substances (HULIS) in particulate matter such as biomass burning aerosol chelate Fe(II), but the effect on ROS formation in the presence of lung antioxidants is not known. We use Suwanee River Fulvic Acid (SRFA) as a surrogate for HULIS and investigate its effect on OH formation from Fe(II). For the first time, a chemical kinetics model was developed to explain behavior of Fe(II) and SRFA in SLF. Model and experimental results are used to find best-fit rate coefficients for key reactions. Modeling results indicate SRFA enhances Fe-mediated reduction of O to O and destruction of HO to OH to 5.1 ± 1.5 and (4.3 ± 1.4) × 10 M s respectively. Best-fit rates for Citrate-Fe(II) mediated O to O and HO to OH were 3.0 ± 0.7 and (4.2 ± 1.7) × 10 M s respectively. The kinetics model agrees with both the experimental results and thermodynamic model calculations of chemical speciation for 0 and 5 μg/mL SRFA, but both models are less successful at predicting further enhancements to OH formation at higher SRFA Concentrations.
Reactive nitrogen (N r) within smoke plumes plays important roles in the production of ozone, the formation of secondary aerosols, and deposition of fixed N to ecosystems. The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) field campaign sampled smoke from 23 wildfires throughout the western U.S. during summer 2018 using the NSF/NCAR C-130 research aircraft. We empirically estimate N r normalized excess mixing ratios and emission factors from fires sampled within 80 min of estimated emission and explore variability in the dominant forms of N r between these fires. We find that reduced N compounds comprise a majority (39%-80%; median = 66%) of total measured reactive nitrogen (ΣN r) emissions. The smoke plumes sampled during WE-CAN feature rapid chemical transformations after emission. As a result, within minutes after emission total measured oxidized nitrogen (ΣNO y) and measured total ΣNH x (NH 3 + pNH 4) are more robustly correlated with modified combustion efficiency (MCE) than NO x and NH 3 by themselves. The ratio of ΣNH x /ΣNO y displays a negative relationship with MCE, consistent with previous studies. A positive relationship with total measured ΣN r suggests that both burn conditions and fuel N content/volatilization differences contribute to the observed variability in the distribution of reduced and oxidized N r. Additionally, we compare our in situ field estimates of N r EFs to previous lab and field studies. For similar fuel types, we find ΣNH x EFs are of the same magnitude or larger than lab-based NH 3 EF estimates, and ΣNO y EFs are smaller than lab NO x EFs. Plain Language Summary Smoke from large wildfires in the western U.S. degrades air quality across the whole U.S. Smoke contains a mixture of many different gases and particles, including carbon compounds like carbon dioxide and carbon monoxide, as well as nitrogen compounds such as ammonia and nitrogen oxides. Gases containing nitrogen are important for the production of ozone and the formation of more or larger particles as the smoke moves downwind. During the summer of 2018, we used the National Science Foundation/National Center for Atmospheric Research C130 research aircraft to fly through smoke across the western U.S. and measure many of the most abundant nitrogen compounds. We find that the smoke plumes we sampled emitted more nitrogen in a reduced form than in an oxidized form, and chemical reactions change the form and phase of nitrogen very quickly in the smoke. We compare our field measurements with laboratory measurements with the goal of using them together to improve our forecasts of how and where wildfire smoke will impact air quality. LINDAAS ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.