We used a cDNA microarray approach to monitor the expression profile of rice (Oryza sativa) under cold stress and identified 328 cold-regulated genes. Thirteen such genes encoding MYB, homeodomain, and zinc finger proteins with unknown functions showed a significant change in expression under 72-h cold stress. Among them, OsMYB3R-2 was selected for further study. Unlike most plant R2R3 MYB transcription factors, OsMYB3R-2 has three imperfect repeats in the DNA-binding domain, the same as in animal c-MYB proteins. Expression of OsMYB3R-2 was induced by cold, drought, and salt stress. The Arabidopsis (Arabidopsis thaliana) transgenic plants overexpressing OsMYB3R-2 showed increased tolerance to cold, drought, and salt stress, and the seed germination of transgenic plants was more tolerant to abscisic acid or NaCl than that of wild type. The expression of some clod-related genes, such as dehydration-responsive element-binding protein 2A, COR15a, and RCI2A, was increased to a higher level in OsMYB3R-2-overexpressing plants than in wild type. These results suggest that OsMYB3R-2 acts as a master switch in stress tolerance.
MYB transcription factors play central roles in plant responses to abiotic stresses. How stress affects development is poorly understood. Here, we show that OsMYB3R-2 functions in both stress and developmental processes in rice (Oryza sativa). Transgenic plants overexpressing OsMYB3R-2 exhibited enhanced cold tolerance. Cold treatment greatly induced the expression of OsMYB3R-2, which encodes an active transcription factor. We show that OsMYB3R-2 specifically bound to a mitosis-specific activator cis-element, (T/C)C(T/C)AACGG(T/C)(T/C)A, a conserved sequence that was found in promoters of cyclin genes such as OsCycB1;1 and OsKNOLLE2. In addition, overexpression of OsMYB3R-2 in rice led to higher transcript levels of several G2/M phase-specific genes, including OsCycB1;1, OsCycB2;1, OsCycB2;2, and OsCDC20.1, than those in OsMYB3R-2 antisense lines or wild-type plants in response to cold treatment. Flow cytometry analysis revealed an increased cell mitotic index in overexpressed transgenic lines of OsMYB3R-2 after cold treatment. Furthermore, resistance to cold stress in the transgenic plants overexpressing OsCycB1;1 was also enhanced. The level of cellular free proline was increased in the overexpressed rice lines of OsMYB3R-2 and OsCycB1;1 transgenic plants compared with wild-type plants under the cold treatment. These results suggest that OsMYB3R-2 targets OsCycB1;1 and regulates the progress of the cell cycle during chilling stress. OsCPT1, which may be involved in the dehydration-responsive element-binding factor 1A pathway, showed the same transcription pattern in response to cold as did OsCycB1;1 in transgenic rice. Therefore, a cold resistance mechanism in rice could be mediated by regulating the cell cycle, which is controlled by key genes including OsMYB3R-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.