The durability of C3S-C3A paste with varied C3A content (0%, 5%, 10%, and 20%) against sulfate attack at various attack ages (3 d, 7 d, 28 d, and 180 d) was investigated in this study through the examinations of corrosion product composition, Ca/Si and Al/Si of calcium-(aluminum)-silicate-hydrate (C-(A)-S-H) gel, formation and evolution of microstructure, migration and transformation of Al containing phase products, and pore structure. The results indicated that sulfate attack can promote the hydration reaction in C3S-C3A paste, thus accelerating the production of C-(A)-S-H gel in the paste. With the increase of C3A content, the acceleration effect becomes more significant. In addition, sulfate attack led to the dealumination and decalcification of C-(A)-S-H gel, resulting in the reduction of the gelling power of C-(A)-S-H gel. The degree of dealumination and decalcification of C-(A)-S-H gel increases with the increase of C3A content. At the same time, free Al and Ca promote the formation of expansive products such as ettringite and gypsum. Finally, under the action of sulfate, the pore characterization of C3S-C3A paste deteriorated, showing a decrease in specific surface area, cumulative pore volume and average pore diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.