Bi-cruciate retaining total knee arthroplasty has several potential advantages including improved anteroposterior knee stability compared to contemporary posterior cruciate-retaining total knee arthroplasty. However, few studies have explored whether there is significant differences of knee biomechanics following bi-cruciate retaining total knee arthroplasty compared to posterior cruciate-retaining total knee arthroplasty. In the present study, subject-specific lower extremity musculoskeletal multi-body dynamics models for bi-cruciate retaining, bi-cruciate retaining without anterior cruciate ligament, and posterior cruciate-retaining total knee arthroplasty were developed based on the musculoskeletal modeling framework using force-dependent kinematics method and validated against in vivo telemetric data. The experiment data of two subjects who underwent total knee arthroplasty were obtained for the SimTK “Grand Challenge Competition” repository, and integrated into the musculoskeletal model. Five walking gait trials for each subject were used as partial inputs for the model to predict the knee biomechanics for bi-cruciate retaining, bi-cruciate retaining without anterior cruciate ligament, and posterior cruciate-retaining total knee arthroplasty. The results revealed significantly greater range of anterior/posterior tibiofemoral translation, and significantly more posterior tibial location during the early phase of gait and more anterior tibial location during the late phase of gait were found in bi-cruciate retaining total knee arthroplasty without anterior cruciate ligament when compared to the bi-cruciate retaining total knee arthroplasty. No significant differences in tibiofemoral contact forces, rotations, translations, and ligament forces between bi-cruciate retaining and posterior cruciate-retaining total knee arthroplasty during normal walking gait, albeit slight differences in range of tibiofemoral internal/external rotation and anterior/posterior translation were observed. The present study revealed that anterior cruciate ligament retention has a positive effect on restoring normal knee kinematics in bi-cruciate retaining total knee arthroplasty. Preservation of anterior cruciate ligament in total knee arthroplasty and knee implant designs interplay each other and both contribute to restoring normal knee kinematics in different types of total knee arthroplasty. Further evaluation of more demanding activities and subject data from patients with bi-cruciate retaining and posterior cruciate-retaining total knee arthroplasty via musculoskeletal modeling may better highlight the role of the anterior cruciate ligament and its stabilizing influence.
For pre-operative osteoarthritis (OA) patients with varus knee, previous studies showed inconsistent results. Therefore, we conducted this study to better identify the association of Hospital for Special Surgery (HSS) score and mechanical alignment. 44 patients (51 knees) with constitutional varus knee caused by combined deformities (LDFA (lateral distal femoral angle) > 90°and MPTA (medial proximal tibial angle) < 85°)) were selected and analyzed with a mean follow-up period of 14 months after total knee arthroplasty (TKA). From January 2015 to December 2016, patients were collected consecutively after primary TKA. After filtering, fifty-one knees (44patients) were analyzed with a mean follow-up period of 14 months. All patients were divided into two groups based on post-operative hip-knee-ankle (HKA) acute angle: varus mechanical alignment (VMA) group (HKA < − 3°) and neutral mechanical axis (NMA) group (− 3° ≤ HKA ≤ 3°). 30 knees were included in the NMA group, and 21 knees in the VMA group. Comparisons of HSS between NMA group and VMA group were performed. After adjusting for age and Body Mass Index (BMI) confounders, Compared with NMA group, the HSS score in VMA group decreased by 0.81 units (95% CI, − 3.37 to 1.75) p = 0.5370). For pre-operative constitutional varus knee caused by combined deformities in chinese populations, no significant association between post-operative lower limb mechanical alignment and HSS score was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.