Herein, we have developed a composite antibacterial hydrogel with photodynamic therapy (PDT) and photothermal therapy (PTT) antibacterial capabilities, triggered by white light and NIR light irradiation. A water-insoluble conjugated polymer (PDPP) with photothermal ability was prepared into nanoparticles by the nanoprecipitation method, and the cell-penetrating peptide TAT was grafted on the surface of the nanoparticles. Based on our previous work that developed a hybrid hydrogel with an enhanced PDT effect from polyisocyanide (PIC) hydrogel and cationic conjugated polythiophene (PMNT), PDPP nanoparticles (CPNs-TAT) with photothermal ability are introduced to realize the synergistic antibacterial effect of PDT and PTT. Using the PIC hydrogel to combine PIC and CPNs-TAT has the following advantages. First, the PIC hydrogel can regulate the aggregation state of PMNT, making it better dispersed and improving its capacity of reactive oxygen species (ROS) production. Second, CPNs-TAT can be uniformly dispersed in the PIC hybrid, thereby avoiding the toxicity caused by too high local concentration, achieving a uniform increase in system temperature, and enhancing the therapeutic effect of PTT. Third, the PIC hybrid has the synergistic treatment effect of PDT and PTT. The PIC hybrid intelligently regulates its antibacterial ability through white light and NIR light, which can be used in the white light and NIR light areas. When irradiated with white light and NIR light sequentially, synergistic PDT and PTT exhibit stronger antibacterial ability than PDT or PTT alone. The combination of two antibacterial methods realizes the dual-control antibacterial hydrogel of PDT and PTT and provides an antibacterial mode based on PIC hybrids. Therefore, the PIC hybrids are promising as an antibacterial excipient for clinical wounds.
The multifunctional photothermal therapy (PTT) platform with the ability to selectively kill bacteria over mammalian cells has received widespread attention recently. Herein, we prepared graphene oxide-amino(polyethyleneglycol) (GO-PEG-NH2) while using the hydrophobic interaction between heptadecyl end groups of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)] (DSPE-PEG-NH2) and graphene oxide (GO). Based on GO-PEG-NH2, the versatile PTT system was constructed with simultaneous selective recognition, capturing, and photothermal killing of bacteria. When the cells undergo bacterial infection, owing to the poly(ethylene glycol) (PEG) chains and positively charged amino groups, GO-PEG-NH2 can specifically recognize and capture bacteria in the presence of cells. Meanwhile, the stable photothermal performance of GO-PEG-NH2 enables the captured bacteria to be efficiently photothermally ablated upon the irradiation of 808 nm laser. Besides, the GO-PEG-NH2 is highly stable in various biological media and it exhibits low cytotoxicity, suggesting that it holds great promise for biological applications. This work provides new insight into graphene-based materials as a PTT agent for the development of new therapeutic platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.