It was recently shown that the gut microbiota of both depression patients and depression model animals is significantly altered, suggesting that gut microbes are closely related to depression. Here, we investigated the effects of Sophora alopecuroides L.-derived alkaloids on the gut microbiota of mice with depression-like behaviors. We first established a mouse model of depression via chronic unpredictable mild stress (CUMS) and detected changes in depression-like behaviors and depression-related indicators. Simultaneously, 16S rRNA sequencing was performed to investigate gut microbiota changes. Sophora alopecuroides L.-derived alkaloids improved depression-like behaviors and depression-related indicators in mice. The alkaloids decreased the gut microbiota diversity of CUMS mice and depleted intestinal differentially abundant “harmful” microbiota genera. Spearman analysis showed that there is a certain correlation between the differential microbiota (Lactobacillus, Helicobacter, Oscillospira, Odoribacter, Mucispirillum, Ruminococcus), depression-like behaviors, and depression-related indicators. Combined with the predictive analysis of gut microbiota function, these results indicate that alkaloids improve depression in mice through modulating gut microbiota.
Background
The realization of the “microbiota–gut–brain” axis plays a critical role in neuropsychiatric disorders, particularly depression, is advancing rapidly. Matrine is a natural bioactive compound, which has been found to possess potential antidepressant effect. However, the underlying mechanisms of regulation of the “microbiota–gut–brain” axis in the treatment of depression by oral matrine remain elusive.
Methods
Its antidepressant effects were initially evaluated by behavioral tests and relative levels of monoamine neurotransmitters, and matrine has been observed to attenuate the depression-like behavior and increase neurotransmitter content in CUMS-induced mice. Subsequently, studies from the “gut” to “brain” were conducted, including detection of the composition of gut microbiota by 16S rRNA sequencing; the metabolomics detection of gut metabolites and the analysis of differential metabolic pathways; the assessment of relative levels of diamine oxidase, lipopolysaccharide, pro-inflammatory cytokines, and brain-derived neurotrophic factor (BDNF) by ELISA kits or immunofluorescence.
Results
Matrine could regulate the disturbance of gut microbiota and metabolites, restore intestinal permeability, and reduce intestinal inflammation, thereby reducing the levels of pro-inflammatory cytokines in peripheral blood circulation and brain regions, and ultimately increase the levels of BDNF in brain.
Conclusion
Matrine may ameliorate CUMS-induced depression in mice by modulating the “microbiota–gut–brain” axis.
Background: To detect the correlation between Lactobacillus vaginalis and the expression of epithelialmesenchymal transition (EMT)-related factors, E-cadherin, β-catenin, N-cadherin, and Vimentin, in postmenopausal cervical squamous intraepithelial lesions (SILs) and cervical squamous cell carcinoma (SCC), and to explore the possible mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.