This article concerns a new and precise strategy for the determination of Cu(2+) based on a color reaction and outer filter effects (OFEs). Cu(2+) can react with sodium diethyldithiocarbamate trihydrate (DDTC) to form a DDTC-Cu(2+) complex with a significant absorption at 447 nm. Being positively correlated with Cu(2+), the absorption could be treated as the basis for the determination of Cu(2+). When cuvettes containing the complex were fixed in the light path of a fluorescence spectrophotometer, the excitation/emitted light were absorbed by the OFEs, similar to absorption mechanisms of inner filter effects. Under suitable conditions, OFEs from the complex could quantitatively reduce the fluorescence intensities of quinine sulfate and acridine yellow by absorbing the excitation or emission light. Compared with traditional absorption spectroscopy (with a detection limit at 0.9 µmol/L), indirect OEF techniques showed increased sensitivities by about 1 order of magnitude. The strategy could be extended to many different systems where components absorb the excitation wavelength and/or emission wavelength of fluorescers.
As one of the important thiazole derivatives, 2-aminobenzothiazole (2-ABT) has been widely used as a structural unit in the synthesis of anti-oxidants, anti-inflammatories, herbicides, antibiotics, and thermoplastic polymers. In this study, the interaction of 2-ABT with human serum albumin (HSA) was investigated in vitro under simulated physiological conditions, using multi-spectroscopic techniques and a molecular modeling study. The binding constant and binding sites were determined through fluorescence quenching spectra. The site-competitive replacement experiments revealed that the precise binding site of 2-ABT on HSA was site II (subdomain IIIA). Moreover, molecular docking results illustrated the electrostatic interaction between Glu 450 and 2-ABT, in accordance with the conclusions from the calculated thermodynamic parameters and the effect of ionic strength. The effect of 2-ABT on the conformational changes of HSA were evaluated by ultraviolet-visible (UV-Vis) absorption, three-dimensional (3D) fluorescence, synchronous fluorescence, and circular dichroism (CD) spectroscopy. This work facilitates comprehensive understanding of the binding of 2-ABT with HSA, contributing to evaluate the molecular transportation mechanism and biotoxicity of 2-aminobenzothiazole derivatives in vivo.
The toxic interaction of ractopamine (RAC) with calf thymus DNA (ct DNA) was studied in vitro using multi-spectroscopic methods and molecular modeling methods. The hypochromic effect without a noticeable shift in UV-vis absorption indicated that the minor groove binding mode existed in the interaction between RAC and DNA. The fluorescence quenching of RAC was observed with the increasing addition of DNA and was proved to be the static quenching. The binding constant and the binding site sizes were 4.13 × 10(3) and 0.97, respectively. The thermodynamic calculation demonstrated that the hydrogen bond and van der Waals were main acting forces. This result further confirmed the existence of groove binding mode. Afterwards, we found another interaction mode, electrostatic binding mode through the fluorescence polarization, ionic effects and denatured DNA experiments. Circular dichroism spectroscopy (CD) was then employed to monitor the conformation changes of DNA. Molecular modeling studies illustrated the visual display of the binding mode and the detailed information of the H-bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.