No abstract
We present an approach to separating reflection from a single image. The approach uses a fully convolutional network trained end-to-end with losses that exploit low-level and high-level image information. Our loss function includes two perceptual losses: a feature loss from a visual perception network, and an adversarial loss that encodes characteristics of images in the transmission layers. We also propose a novel exclusion loss that enforces pixel-level layer separation. We create a dataset of real-world images with reflection and corresponding ground-truth transmission layers for quantitative evaluation and model training. We validate our method through comprehensive quantitative experiments and show that our approach outperforms state-of-the-art reflection removal methods in PSNR, SSIM, and perceptual user study. We also extend our method to two other image enhancement tasks to demonstrate the generality of our approach.
We present a semi-parametric approach to photographic image synthesis from semantic layouts. The approach combines the complementary strengths of parametric and nonparametric techniques. The nonparametric component is a memory bank of image segments constructed from a training set of images. Given a novel semantic layout at test time, the memory bank is used to retrieve photographic references that are provided as source material to a deep network. The synthesis is performed by a deep network that draws on the provided photographic material. Experiments on multiple semantic segmentation datasets show that the presented approach yields considerably more realistic images than recent purely parametric techniques.
Input with distant object ESRGAN Ours-syn-raw Ours (A) Bicubic and ground truth (B) 8-bit RGB (C) Synthetic sensor (D) Real sensor Figure 1: Our model (D) trained with real raw sensor data achieves better 4X computational zoom. We compare zoomed output against (B) ESRGAN [30], representative of state-of-the-art learning-based super-resolution methods, which operate on processed 8-bit RGB input, and (C) our model trained on synthetic sensor data. In (A), digital zoom via bicubic upsampling is the naïve baseline and optical zoom serves as the reference ground truth. Our output is artifact-free and preserves detail even for challenging regions such as the high-frequency grillwork. AbstractThis paper shows that when applying machine learning to digital zoom, it is beneficial to operate on real, RAW sensor data. Existing learning-based super-resolution methods do not use real sensor data, instead operating on processed RGB images. We show that these approaches forfeit detail and accuracy that can be gained by operating on raw data, particularly when zooming in on distant objects. The key barrier to using real sensor data for training is that ground-truth high-resolution imagery is missing. We show how to obtain such ground-truth data via optical zoom and contribute a dataset, SR-RAW, for real-world computational zoom. We use SR-RAW to train a deep network with a novel contextual bilateral loss that is robust to mild misalignment between input and outputs images. The trained network achieves state-of-the-art performance in 4X and 8X computational zoom. We also show that synthesizing sen-sor data by resampling high-resolution RGB images is an oversimplified approximation of real sensor data and noise, resulting in worse image quality. 1 1 Project website at: https://ceciliavision.github.io/ project-pages/project-zoom.html 1 arXiv:1905.05169v1 [cs.CV]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.