Under multi-wheel heavy load, the asphalt mixture is prone to exhibit the deformation superposition effect, which exacerbates the damage of pavement structure. Multi-point penetration tests and numerical simulations by discrete element method (DEM) are performed to investigate the deformation superposition effect and micromechanical characteristics of asphalt mixture. The effect of wheel spacing, wheel group, and the evolution of micromechanical deformation superposition behavior are analyzed. Results indicate that the deformation superposition resistance of the asphalt mixture under the multi-wheel load decreases dramatically with the decrease in wheel spacing and the increase in the number of wheels, specifically the wheel spacing is 54 mm and the number of wheels is 4. The DEM simulations reflect the micromechanical property of asphalt mixture in the multi-point penetration test. The reduction of tensile chains is the internal reason for asphalt mixture deformation superposition, indicating the decrease of the adhesive strength of the material. A remarkably positive correlation is found between the reduction of the tensile chain and the deformation effect coefficient. In the process of superposition, the aggregate skeleton force chains are gradually destroyed and decrease to zero until cracking. The numerical simulation outcome is consistent with the laboratory penetration test outcome.
Under multi-wheel heavy load, the asphalt mixture is prone to exhibit the deformation superposition effect, which exacerbates the damage of pavement structure. Multi-point penetration tests and numerical simulations by discrete element method (DEM) are performed to investigate the deformation superposition effect and micromechanical characteristics of asphalt mixture. The effect of wheel spacing, wheel group, and the evolution of micromechanical deformation superposition behavior are analyzed. Results indicate that the deformation superposition resistance of the asphalt mixture under the multi-wheel load decreases considerably with the increase in wheel spacing and the number of wheels. The DEM simulations reflect the micromechanical property of asphalt mixture in the multi-point penetration test. The reduction of tensile chains is the internal reason for asphalt mixture deformation superposition, indicating the decrease of the adhesive strength of the material. A remarkably positive correlation is found between the reduction of the tensile chain and the deformation effect coefficient. In the process of superposition, the aggregate skeleton force chains are gradually destroyed and decrease to zero until cracking. The numerical simulation outcome is consistent with the laboratory penetration test outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.