Many market participants now employ algorithmic trading, commonly defined as the use of computer algorithms, to automatically make certain trading decisions, submit orders and manage those orders after submission. Identifying and understanding the impact of algorithmic trading on financial markets has become a critical issue for market operators and regulators. Advanced data feeds and audit trail information from market operators now allow for the full observation of market participants’ actions. A key question is the extent to which it is possible to understand and characterize the behaviour of individual participants from observations of trading actions. In this paper, we consider the basic problems of categorizing and recognizing traders (or, equivalently, trading algorithms) on the basis of observed limit orders. These problems are of interest to regulators engaged in strategy identification for the purposes of fraud detection and policy development. Methods have been suggested in the literature for describing trader behaviour using classification rules defined over a feature space consisting of summary trading statistics of volume and inventory, along with derived variables that reflect the consistency of buying or selling behaviour. Our principal contribution is to suggest an entirely different feature space that is constructed by inferring key parameters of a sequential optimization model that we take as a surrogate for the decision-making process of the traders. In particular, we model trader behaviour in terms of a Markov decision process. We infer the reward (or objective) function for this process from observations of trading actions using a process from machine learning known as inverse reinforcement learning (IRL). The reward functions learned through IRL then constitute a feature space that can be the basis for supervised learning (for classification or recognition of traders) or unsupervised learning (for categorization of traders). Making use of a real-world data-set from the E-Mini futures contract, we compare two principal IRL variants, linear IRL and Gaussian Process IRL, against a method based on summary trading statistics. Results suggest that IRL-based feature spaces support accurate classification and meaningful clustering. Further, we argue that, because they attempt to learn traders’ underlying value propositions under different market conditions, the IRL methods are more informative and robust than the summary statistic-based approach and are well suited for discovering new behaviour patterns of market participants
We study the use of inverse reinforcement learning (IRL) as a tool for recognition of agents on the basis of observation of their sequential decision behavior. We model the problem faced by the agents as a Markov decision process (MDP) and model the observed behavior of an agent in terms of forward planning for the MDP. The reality of the agent's decision problem and process may not be expressed by the MDP and its policy, but we interpret the observation as optimal actions in the MDP. We use IRL to learn reward functions for the MDP and then use these reward functions as the basis for clustering or classification models. Experimental studies with GridWorld, a navigation problem, and the secretary problem, an optimal stopping problem, show algorithms' performance in different learning scenarios for agent recognition where the agents' underlying decision strategy may be expressed by the MDP policy or not. Empirical comparisons of our method with several existing IRL algorithms and with direct methods that use feature statistics observed in state-action space suggest it may be superior for agent recognition problems, particularly when the state space is large but the length of the observed decision trajectory is small.
Bigradient all‐dielectric metamaterials provide subwavelength‐scale on‐chip metalenses solution for dense photonic integrated circuits by structural engineering. (DOI: https://doi.org/10.1002/inf2.12264)
We propose a multiple instance learning approach to contentbased retrieval of classroom video for the purpose of supporting human assessing the learning environment. The key element of our approach is a mapping between the semantic concepts of the assessment system and features of the video that can be measured using techniques from the fields of computer vision and speech analysis. We report on a formative experiment in content-based video retrieval involving trained experts in the Classroom Assessment Scoring System, a widely used framework for assessment and improvement of learning environments. The results of this experiment suggest that our approach has potential application to productivity enhancement in assessment and to broader retrieval tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.