Hydrothermal anomalies related to the Ms8.0 Wenchuan earthquake (EQ) on May 12, 2009, have been widely reported. However, the reported anomalies have not been associated with multi-geosphere analysis, and space–time analysis with crustal seismicity is lacking. In this paper, the space–time variation of hydrothermal parameters, including soil moisture, soil temperature, near-surface relative humidity (RHsig995) and air temperature (TMPsfc), was first extracted and analyzed with the NCEP-FNL reanalysis dataset. The b-value (a seismic parameter from the Gutenberg–Richter law) was calculated and mapped to unravel the crustal stress and rock rupture. Our results reveal a similar time window for hydrothermal anomalies on April 20 and April 30, 2008, and these anomalies are mainly distributed along the southern and middle parts of the Longmenshan fault zone. The surface temperature anomalies lag behind the humidity anomalies, and the accelerating stress accumulation started since June 2007 and lasted for eight to nine months before the mainshock. The b-value mapping shows a segmented difference along strike of the Longmenshan fault, and that regional stress accumulated mainly in the southern parts of the F2 and F3 faults. We propose the occurrence of a complex coupling process led by crustal stress buildup before the Wenchuan EQ. The anomalies are concentrated in the southern part of the surface rupture zone. The prolonged crustal stress accumulation corresponds to the short intermittent hydrothermal response on the Earth’s surface before the Wenchuan EQ. Our findings reveal new hydrothermal anomalies in the Earth’s surface and atmosphere and explore direct link with seismogenic processes in the crust.
Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy. In this study, we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system. Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm, because it can be run without the initial value and objective function derivation, and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension. This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions. Therefore, the methodology, based on a multidimensional DIRECT algorithm, can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution, which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.