The lockdowns from the coronavirus disease of 2019 (COVID-19) have led to a reduction in anthropogenic activities and have hence reduced primary air pollutant emissions, which were reported to have helped air quality improvements. However, air quality expressed by the air quality index (AQI) did not improve in Shanghai, China, during the COVID-19 outbreak in the spring of 2022. To better understand the reason, we investigated the variations of nitrogen dioxide (NO2), ozone (O3), PM2.5 (particular matter with an aerodynamic diameter of less than 2.5 μm), and PM10 (particular matter with an aerodynamic diameter of less than 10 μm) by using in situ and satellite measurements from 1 March to 31 June 2022 (pre-, full-, partial-, and post-lockdown periods). The results show that the benefit of the significantly decreased ground-level PM2.5, PM10, and NO2 was offset by amplified O3 pollution, therefore leading to the increased AQI. According to the backward trajectory analyses and multiple linear regression (MLR) model, the anthropogenic emissions dominated the observed changes in air pollutants during the full-lockdown period relative to previous years (2019–2021), whereas the long-range transport and local meteorological parameters (temperature, air pressure, wind speed, relative humidity, and precipitation) influenced little. We further identified the chemical mechanism that caused the increase in O3 concentration. The amplified O3 pollution during the full-lockdown period was caused by the reduction in anthropogenic nitrogen oxides (NOx) under a VOC-limited regime and high background O3 concentrations owing to seasonal variations. In addition, we found that in the downtown area, ground-level PM2.5, PM10, and NO2 more sensitively responded to the changes in lockdown measures than they did in the suburbs. These findings provide new insights into the impact of emission control restrictions on air quality and have implications for air pollution control in the future.
Aerosol is important to climate and air pollution, and different aerosol types have a non-negligible impact on the environment and climate system. Based on long-term satellite lidar profiles from 2006 to 2020, the four-dimensional (x-y-z-t) spatiotemporal characteristics of different aerosol types, including clean marine (CM), dust (DU), polluted continental/smoke (PC), clean continental (CC), polluted dust (PD), elevated smoke (ES), and dusty marine (DM), over the coastal waters of the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) were revealed for the first time and compared to the surrounding northern South China Sea (NSCS). (1) The dominant aerosol types in both study areas were found to be CM, ES, and DM, whose proportions summed up to more than 85%. In spring, ES was the dominant aerosol type (>40%); in other seasons, CM dominated (>34%). The proportions of anthropogenic aerosols (PC, PD, and ES) and dust-related aerosols (DU, PD, and DM) were higher in spring and winter than in summer and autumn. (2) Vertically, the number of all aerosol types declined with increasing altitude, with the exception of abnormal increase at the heights of approximately 1.5–2.8 km in spring, which was probably attributed to the effect of local and regional anthropogenic pollutants. Below the height of 2 km, the main aerosol types were CM and DM, whereas ES, PD, and DU aerosols were dominant above 2 km. (3) Horizontally, the dominant aerosol types were spatially uniform in the lower atmosphere (<2 km), while higher altitudes (especially > 4 km) showed significant horizontal heterogeneity in space. The proportion of anthropogenic aerosols over the coastal waters of the GBA was higher than that over the NSCS, due to terrestrial pollution transportation. (4) In terms of the long-term trend, the proportion of CM aerosols was found to be steadily increasing, with the anthropogenic aerosols and dust-related aerosols showing a fluctuating and decreasing trend, which resulted from the enforcement of effective air pollution control policies. Overall, the terrestrial aerosol influence tended to decrease in the study areas. The insight into aerosol types and its variation will facilitate the understanding of the aerosol climate effects and pollutant control in the coastal waters of the GBA and the NSCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.