Enrofloxacin (ENR) is one of the most commonly used antibiotics in pig farms. In this study, using fresh pig manure and corn straw powder as substrates, the effects of different concentrations of ENR (2.5, 10, and 20 mg/L) on anaerobic digestion in completely mixed anaerobic reactors were investigated. A relatively low concentration of ENR (2.5 mg/L) increased methane production by 47.58% compared with the control group. Among the volatile fatty acids (VFAs) in the reactors, the propionic acid content was the lowest, and the concentrations of acetic acid kinase and coenzyme F420 were highest in the first seven days during peak gas production. However, methane production in the reactors with 10 mg/L and 20 mg/L ENR decreased by 8.59% and 20.25%, respectively. Furthermore, the accelerated hydrolysis of extracellular polymeric substances causes a significant accumulation of VFA levels. The microbial community in anaerobic reactors was analyzed by 16S rRNA sequencing. Proteiniphilum was the dominant bacterial genus. In addition, ENR at 2.5 mg/L effectively increased the abundance and diversity of anaerobic microorganisms, whereas a high concentration of ENR (10 and 20 mg/L) significantly decreased these parameters. This study demonstrated that different concentrations of ENR had significantly different effects on anaerobic digestion.
Oxytetracycline (OTC) is a commonly used antibiotic in livestock farming for controlling intestinal and respiratory infections in farm animals. However, the absorption of antibiotics by animals is limited, and most antibiotics are excreted in the original form with manure, which will have an impact on the environment. The removal of antibiotics from swine manure could generally be performed via anaerobic digestion (AD). In this study, the effect of oxytetracycline (OTC) at doses of 0.1, 0.5, and 1.0 mg/L on the thermophilic anaerobic digestion of swine manure (55 °C) in batch digesters was studied. The methane production, volatile fatty acid (VFA) levels, and dissolved organic matter (DOM) were determined and compared with the control (0 mg/L of OTC). The results indicate that (1) OTC at 0.1 mg/L had no inhibitory effect on methane production or on the accumulation of VFAs, while 0.5 mg/L and 1.0 mg/L inhibited methane production, with inhibition rates of 4.03% and 14.12% (p < 0.05), respectively; (2) the VFAs of each reactor peaked on the first day of the reaction, and as the OTC dose increased from 0 to 1.0 mg/L, the maximum VFA accumulation increased from 1346.94 mg/g to 2370 mg/g of volatile solids (VS); and (3) oxytetracycline (0.5 and 1.0 mg/L) could promote the temporary accumulation of propionic acid, which did, however, not result in significant VFA accumulation. Further, OTC at 1.0 mg/L can promote DOM production, and therefore, VFA accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.