Surface-enhanced Raman scattering (SERS) provides a novel method for low concentration molecular detection. The performances were highly dependent on the sizes, geometries and distributions of metal nanostructures. Here, highly sensitive SERS fiber probe based on silver nanocubes (Ag NCs) was fabricated, by assembled nanostructures on planar and tapered fiber tips. Ag NCs were synthesized by polyol method, and controlled by reductant content, reaction temperatures and crystal growth durations. Tapered fibers with different cone angles were prepared by chemical etching. The electromagnetic distribution simulation indicated that nanocubes had stronger electric field between two cubes and vertex corners than nanosphere, under 532 nm laser excitation. The intensity could reach 53.52 V/m, for cubes with 70 nm edge length. The SERS performance of probes was characterized using crystal violet analyte. The detectable lowest concentration could reach 10 -9 and 10 -10 M for planar and tapered fiber probes, respectively. The corresponding enhancement factor could be 9.02 × 10 7 and 6.22 × 10 8 . The relationship between SERS peak intensities and analyte concentrations showed well linear, which indicated both fiber probes could be applied for both qualitative and quantitative analysis. Furthermore, optimal cone angle of tapered fiber SERS probe was 8.3°. The tapered fiber SERS probes have highly sensitive activity and great potential in substance detection.
The detection performances of noble metal-based surface enhanced Raman spectroscopy (SERS) devices are determined by the compositions and geometries of the metal nanostructures, as well as the substrates. In the current study, long spiky Au-Ag alloy nanostars were synthesized, and both core diameters and spike lengths were controlled by Lauryl sulfobetaine concentrations (as the nanostructure growth skeleton). The long spiky star geometries were confirmed by transmission electron micrograph images. Elements energy dispersive spectrometer mapping confirmed that Au and Ag elements were inhomogeneously distributed in the nanostructures and demonstrated a higher Ag content at surface for potential better SERS performance. Selected synthesized spiky nanostars were uniformly assembled on multi-mode silica fiber for probe fabrication by silanization. The SERS performance were characterized using crystal violet (CV) and rhodamine 6G (R6G) as analyte molecules. The lowest detection limit could reach as low as 10−8 M, with a 6.23 × 106 enhancement factor, and the relationship between analyte concentrations and Raman intensities was linear for both CV and R6G, which indicated the potential qualitative and quantitative molecule detection applications. Moreover, the fiber probes also showed good reproducibility and stability in the ambient atmosphere.
The advent of the era of big data is bound to promote the development of databases. How to bring clinicians’ focus back to clinical practice and enhance the clinical capabilities of general physicians at the primary level is a question that every member of the academic publishing profession needs to consider. If data and knowledge can be shared openly, research and medical management will develop at an accelerated pace. Given the global consensus on open science, the co-construction and sharing of a Chinese medical case repository will surely improve the practical capability of clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.