Benefiting from the massive available data provided by Internet of multimedia things (IoMT), enormous intelligent services requiring information of various types to make decisions are emerging. Generally, the IoMT devices are equipped with limited computing power, interfering with the process of computation-intensive services. Currently, to satisfy a wide range of service requirements, the novel computing paradigms, i.e., cloud computing and edge computing, can potentially be integrated for service accommodation. Nevertheless, the private information (i.e., location, service type, etc.) in the services is prone to spilling out during service offloading in the cloud-edge computing. To avoid privacy leakage while improving service utility, including the service response time and energy consumption for service executions, a <underline>L</underline>ocality-sensitive-hash (LSH)-based <underline>o</underline>ffloading <underline>m</underline>ethod, named LOM, is devised. Specifically, LSH is leveraged to encrypt the feature information for the services offloaded to the edge servers with the intention of privacy preservation. Eventually, comparative experiments are conducted to verify the effectiveness of LOM with respect to promoting service utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.