Formation of filamentary gas discharge forms, commonly referred to as streamers, is one of the conditions required for initiation and subsequent propagation of lightning leaders. It is quantitatively demonstrated that streamers can be initiated under thunderstorm conditions when two precipitation particles cause an enhancement of the electric field by passing in close vicinity of each other. Conditions for avalanche‐to‐streamer transition are documented using a model of two spherical hydrometeor particles placed in uniform ambient field. The results are presented in scaled form using similarity relations for gas discharges and can be applied for a wide range of thunderstorm conditions, including different air pressures, electric fields, and particle dimensions.
In order to initiate streamers and leaders under thunderstorm conditions the electric field should reach values higher than the critical breakdown field Ek (i.e., ∼30 kV·cm−1·atm−1). However, the maximum electric field in thunderstorms measured by balloons is ∼6–9 kV·cm−1·atm−1. In present work, to achieve the electric field amplification required for streamer initiation, a system of two approaching spherical hydrometeors is investigated. Streamer initiation is determined from a Meek number, describing electron multiplication in fields above Ek. We have found the relationships between radii of particles for successful streamer initiation in the gap between these two particles and also on the outside periphery of the two particle system when the particles are connected by a discharge channel. Furthermore, we estimated the frequency of streamer initiation using three realistic hydrometeor size model distributions available in the literature and found that the scenario of streamer initiation on the outside periphery is only possible for relatively high electric fields ≥0.5Ek at altitudes of 3 and 6 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.