Baculoviruses are double-stranded DNA viruses which are highly selective for several insect groups. They are valuable natural control agents, but their utility in many agricultural applications has been limited by their slow speed of kill and narrow host specificity. Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to accelerate their speed of kill. In our and other laboratories, the expression of genes coding for insect juvenile hormone esterases and various peptide neurotoxins has resulted in recombinant baculoviruses with promise as biological insecticides. These viruses are efficacious in the laboratory, greenhouse and field and dramatically reduce damage caused by insect feeding. The recombinant viruses synergize and are synergized by classical pesticides such as pyrethroids. Since they are highly selective for pest insects, they can be used without disrupting biological control. Because the recombinant virus produces fewer progeny in infected larvae than the wild-type virus, they are rapidly out-competed in the ecosystem. The viruses can be used effectively with crops expressing endotoxins of Bacillus thuringiensis. They can be produced industrially but also by village industries, indicating that they have the potential to deliver sustainable pest control in developing countries. It remains to be seen, however, whether the current generation of recombinant baculoviruses will be competitive with the new generation of synthetic chemical pesticides. Current research clearly indicates, though, that the use of biological vectors of genes for insect control will find a place in agriculture. Baculoviruses will also prove valuable in testing the potential utility of proteins and peptides for insect control.
Faldaprevir, an investigational agent for hepatitis C virus treatment, is well tolerated but associated with rapidly reversible, dosedependent, clinically benign, unconjugated hyperbilirubinemia. Multidisciplinary preclinical and clinical studies were used to characterize mechanisms underlying this hyperbilirubinemia. In vitro, faldaprevir inhibited key processes involved in bilirubin clearance: UDP glucuronosyltransferase (UGT) 1A1 (UGT1A1) (IC 50 0.45 mM), which conjugates bilirubin, and hepatic uptake and efflux transporters, organic anion-transporting polypeptide (OATP) 1B1 (IC 50 0.57 mM), OATP1B3 (IC 50 0.18 mM), and multidrug resistanceassociated protein (MRP) 2 (IC 50 6.2 mM), which transport bilirubin and its conjugates. In rat and human hepatocytes, uptake and biliary excretion of [ 3 H]bilirubin and/or its glucuronides decreased on coincubation with faldaprevir. In monkeys, faldaprevir ($20 mg/kg per day) caused reversible unconjugated hyperbilirubinemia, without hemolysis or hepatotoxicity. In clinical studies, faldaprevir-mediated hyperbilirubinemia was predominantly unconjugated, and levels of unconjugated bilirubin correlated with the UGT1A1*28 genotype. The reversible and dose-dependent nature of the clinical hyperbilirubinemia was consistent with competitive inhibition of bilirubin clearance by faldaprevir, and was not associated with liver toxicity or other adverse events. Overall, the reversible, unconjugated hyperbilirubinemia associated with faldaprevir may predominantly result from inhibition of bilirubin conjugation by UGT1A1, with inhibition of hepatic uptake of bilirubin also potentially playing a role. Since OATP1B1/1B3 are known to be involved in hepatic uptake of circulating bilirubin glucuronides, inhibition of OATP1B1/1B3 and MRP2 may underlie isolated increases in conjugated bilirubin. As such, faldaprevirmediated hyperbilirubinemia is not associated with any liver injury or toxicity, and is considered to result from decreased bilirubin elimination due to a drug-bilirubin interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.