While the long non-coding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to increased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in mediating such enhancement of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.
MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that are important in many biological processes. Although the oncogenic and tumour-suppressive functions of several miRNAs have been characterized, the role of miRNAs in mediating tumour metastasis was addressed only recently and still remains largely unexplored. To identify potential metastasis-promoting miRNAs, we set up a genetic screen using a non-metastatic, human breast tumour cell line that was transduced with a miRNA-expression library and subjected to a trans-well migration assay. We found that human miR-373 and miR-520c stimulated cancer cell migration and invasion in vitro and in vivo, and that certain cancer cell lines depend on endogenous miR-373 activity to migrate efficiently. Mechanistically, the migration phenotype of miR-373 and miR-520c can be explained by suppression of CD44. We found significant upregulation of miR-373 in clinical breast cancer metastasis samples that correlated inversely with CD44 expression. Taken together, our findings indicate that miRNAs are involved in tumour migration and invasion, and implicate miR-373 and miR-520c as metastasis-promoting miRNAs.
SUMMARY The discovery of long non-coding RNA (lncRNA) has dramatically altered our understanding of cancer. Here, we describe a comprehensive analysis of lncRNA alterations at transcriptional, genomic, and epigenetic levels in 5,037 human tumor specimens across 13 cancer types from the Cancer Genome Atlas (TCGA). Our results suggest that the expression and dysregulation of lncRNAs are highly cancer-type specific compared to protein-coding genes. Using the integrative data generated by this analysis, we present a clinically guided small interfering RNA screening strategy and a co-expression analysis approach to identify cancer driver lncRNAs and predict their functions. This provides a resource for investigating lncRNAs in cancer and lays the groundwork for the development of new diagnostics and treatments.
MicroRNAs (miRNAs) are an abundant class of small noncodingRNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n ؍ 106), array-based comparative genomic hybridization (n ؍ 109), cDNA microarray (n ؍ 76), and tissue array (n ؍ 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the downregulation of Ϸ15% and at least Ϸ36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.Dlk1-Gtl2 domain ͉ noncoding RNA
Summary In a genome-wide survey on somatic copy number alterations (SCNAs) of long non-coding RNA (lncRNA) in 2,394 tumor specimens from 12 cancer types, we found that about 21.8% of lncRNA genes were located in regions with focal SCNAs. By integrating bioinformatics analyses of lncRNA SCNAs and expression with functional screening assays, we identified an oncogene, Focally Amplified lncRNA on Chromosome 1 (FAL1), whose copy number and expression are correlated with outcomes in ovarian cancer. FAL1 associates with the epigenetic repressor BMI1 and regulates its stability in order to modulate the transcription of a number of genes including CDKN1A. The oncogenic activity of FAL1 is partially attributable to its repression of p21. FAL1-specific siRNAs significantly inhibit tumor growth in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.